ROOT logo
ROOT » MATH » GENVECTOR » ROOT::Math::AxisAngle

class ROOT::Math::AxisAngle


      AxisAngle class describing rotation represented with direction axis (3D Vector) and an
      angle of rotation around that axis.

      @ingroup GenVector


Function Members (Methods)

public:
~AxisAngle()
ROOT::Math::AxisAngle::ScalarAngle() const
ROOT::Math::AxisAngle::AxisVectorAxis() const
ROOT::Math::AxisAngleAxisAngle()
ROOT::Math::AxisAngleAxisAngle(const ROOT::Math::AxisAngle&)
ROOT::Math::AxisAngleAxisAngle(const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v, ROOT::Math::AxisAngle::Scalar angle)
ROOT::Math::AxisAngleAxisAngle(double* begin, double* end)
voidGetComponents(double* begin) const
ROOT::Math::AxisAngleInverse() const
voidInvert()
booloperator!=(const ROOT::Math::AxisAngle& rhs) const
ROOT::Math::AxisAngle::XYZVectoroperator()(const ROOT::Math::AxisAngle::XYZVector& v) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::Rotation3D& r) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::AxisAngle& a) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::EulerAngles& e) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::Quaternion& q) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::RotationZYX& r) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::RotationX& rx) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::RotationY& ry) const
ROOT::Math::AxisAngleoperator*(const ROOT::Math::RotationZ& rz) const
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator*(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator*(const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >operator*(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >& v) const
ROOT::Math::AxisAngle&operator=(ROOT::Math::Rotation3D const& r)
ROOT::Math::AxisAngle&operator=(ROOT::Math::EulerAngles const& r)
ROOT::Math::AxisAngle&operator=(ROOT::Math::RotationZYX const& r)
ROOT::Math::AxisAngle&operator=(ROOT::Math::RotationX const& r)
ROOT::Math::AxisAngle&operator=(ROOT::Math::RotationY const& r)
ROOT::Math::AxisAngle&operator=(ROOT::Math::RotationZ const& r)
ROOT::Math::AxisAngle&operator=(ROOT::Math::Quaternion const& r)
ROOT::Math::AxisAngle&operator=(const ROOT::Math::AxisAngle&)
booloperator==(const ROOT::Math::AxisAngle& rhs) const
voidRectify()
voidSetComponents(double* begin, double* end)
private:
static doublePi()
voidRectifyAngle()

Data Members

private:
ROOT::Math::AxisAngle::ScalarfAnglerotation angle
ROOT::Math::AxisAngle::AxisVectorfAxisrotation axis (3D vector)

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

AxisAngle()
      Default constructor (axis is z and angle is zero)

{ }
AxisAngle(const AnyVector & v, Scalar angle)
      Construct from a non-zero vector (x,y,z) and an angle.
      Precondition:  the Vector needs to implement x(), y(), z(), and unit()

{ }
AxisAngle(IT begin, IT end)
      Construct given a pair of pointers or iterators defining the
      beginning and end of an array of four Scalars, to be treated as
      the x, y, and z components of a unit axis vector, and the angle
      of rotation.
      Precondition:  The first three components are assumed to represent
      the rotation axis vector and the 4-th the rotation angle.
      The angle is assumed to be in the range (-pi,pi].
      The axis vector is automatically normalized to be a unit vector

{ SetComponents(begin,end); }
void Rectify()
 The compiler-generated copy ctor, copy assignment, and dtor are OK.

      Re-adjust components to eliminate small deviations from the axis
      being a unit vector and angles out of the canonical range (-pi,pi]

explicit AxisAngle(const ROOT::Math::AxisAngle& )
 ======== Construction From other Rotation Forms ==================

      Construct from another supported rotation type (see gv_detail::convert )

{gv_detail::convert(r,*this);}
AxisAngle & operator=( OtherRotation const & r )
      Assign from another supported rotation type (see gv_detail::convert )

void SetComponents(double* begin, double* end)
 ======== Components ==============

      Set the axis and then the angle given a pair of pointers or iterators
      defining the beginning and end of an array of four Scalars.
      Precondition:  The first three components are assumed to represent
      the rotation axis vector and the 4-th the rotation angle.
      The angle is assumed to be in the range (-pi,pi].
      The axis vector is automatically normalized to be a unit vector

void GetComponents(IT begin, IT end)
      Get the axis and then the angle into data specified by an iterator begin
      and another to the end of the desired data (4 past start).

Scalar Angle() const
      access to rotation angle

{ return fAngle; }
XYZVector operator()(const ROOT::Math::AxisAngle::XYZVector& v) const
AVector operator*(const AVector & v)
      Overload operator * for rotation on a vector

void Invert()
      Invert an AxisAngle rotation in place

{ fAngle = -fAngle; }
AxisAngle Inverse() const
      Return inverse of an AxisAngle rotation

{ AxisAngle result(*this); result.Invert(); return result; }
return ! operator==(const ROOT::Math::AxisAngle& rhs) const
void RectifyAngle()
double Pi()
{ return 3.14159265358979323; }
AxisAngle operator*(RotationX const & r1, AxisAngle const & r2)
   Multiplication of an axial rotation by an AxisAngle

AxisAngle operator*(RotationY const & r1, AxisAngle const & r2)
AxisAngle operator*(RotationZ const & r1, AxisAngle const & r2)