ROOT logo
// Example showing the usage of the major special math functions  (gamma, beta, erf)  in ROOT
// To execute the macro type in:
//
// root[0]: .x GammaFun.C 
//
// It will create one canvas with the representation 
//of the tgamma, lgamma, beta, erf and erfc functions

//
//  Author: Magdalena Slawinska

#include "TMath.h"
#include "TF1.h"
#include "TF2.h"
#include "TSystem.h"
#include "TCanvas.h"
#include "TStyle.h"
#include "TPaveLabel.h"
#include "TAxis.h"
#include "TH1.h" 

void GammaFun() {

gSystem->Load("libMathCore");

gStyle->SetPalette(1);
gStyle->SetOptStat(0);


TF1 *f1a = new TF1("Gamma(x)","ROOT::Math::tgamma(x)",-2,5);
TF1 *f2a = new TF1("f2a","ROOT::Math::lgamma(x)",0,10);
TF2 *f3a = new TF2("Beta(x)","ROOT::Math::beta(x, y)",0,0.1, 0, 0.1);
TF1 *f4a = new TF1("erf(x)","ROOT::Math::erf(x)",0,5);
TF1 *f4b = new TF1("erfc(x)","ROOT::Math::erfc(x)",0,5);

TCanvas *c1 = new TCanvas("c1", "Gamma and related functions",1000,750);

c1->SetFillColor(17);
c1->Divide(2,2);


c1->cd(1);
gPad->SetGrid();
gPad->SetFrameFillColor(19);
 
//setting the title in a label style
TPaveLabel *p1 = new TPaveLabel(.1,.90 , (.1+.50),(.90+.10) ,"ROOT::Math::tgamma(x)", "NDC");
p1->SetFillColor(0);
p1->SetTextFont(22);
p1->SetTextColor(kBlack);

//setting graph 
// draw axis first (use TH1 to draw the frame)
TH1F * h = new TH1F("htmp","",500,-2,5);
h->SetMinimum(-20);
h->SetMaximum(20);
h->GetXaxis()->SetTitleSize(0.06);
h->GetXaxis()->SetTitleOffset(.7);
h->GetXaxis()->SetTitle("x");

h->Draw(); 

// draw the funcitions 3 times in the separate ranges to avoid singularities 
f1a->SetLineWidth(2);
f1a->SetLineColor(kBlue);

f1a->SetRange(-2,-1);
f1a->DrawCopy("same");

f1a->SetRange(-1,0);
f1a->DrawCopy("same");

f1a->SetRange(0,5);
f1a->DrawCopy("same");


p1->Draw();

c1->cd(2);
gPad->SetGrid();
gPad->SetFrameFillColor(19);
TPaveLabel *p2 = new TPaveLabel(.1,.90 , (.1+.50),(.90+.10) ,"ROOT::Math::lgamma(x)", "NDC");
   p2->SetFillColor(0);
   p2->SetTextFont(22);
   p2->SetTextColor(kBlack);
f2a->SetLineColor(kBlue);
f2a->SetLineWidth(2);
f2a->GetXaxis()->SetTitle("x");
f2a->GetXaxis()->SetTitleSize(0.06);
f2a->GetXaxis()->SetTitleOffset(.7);
f2a->SetTitle("");
f2a->Draw();
 p2->Draw();

c1->cd(3);
gPad->SetGrid();
gPad->SetFrameFillColor(19);

TPaveLabel *p3 = new TPaveLabel(.1,.90 , (.1+.50),(.90+.10) ,"ROOT::Math::beta(x, y)", "NDC");
   p3->SetFillColor(0);
   p3->SetTextFont(22);
   p3->SetTextColor(kBlack);
f3a->SetLineWidth(2);
f3a->GetXaxis()->SetTitle("x");
f3a->GetXaxis()->SetTitleOffset(1.2);
f3a->GetXaxis()->SetTitleSize(0.06);
f3a->GetYaxis()->SetTitle("y");
f3a->GetYaxis()->SetTitleSize(0.06);
f3a->GetYaxis()->SetTitleOffset(1.5);
f3a->SetTitle("");
 f3a->Draw("surf1");//option for a 3-dim plot
p3->Draw();

c1->cd(4);
gPad->SetGrid();
gPad->SetFrameFillColor(19);
TPaveLabel *p4 = new TPaveLabel(.1,.90 , (.1+.50),(.90+.10) ,"erf(x) and erfc(x)", "NDC");
   p4->SetFillColor(0);
   p4->SetTextFont(22);
   p4->SetTextColor(kBlack);
f4a->SetTitle("erf(x) and erfc(x)");
f4a->SetLineWidth(2);
f4b->SetLineWidth(2);
f4a->SetLineColor(kBlue);
f4b->SetLineColor(kRed);
f4a->GetXaxis()->SetTitleSize(.06);
f4a->GetXaxis()->SetTitleOffset(.7);
f4a->GetXaxis()->SetTitle("x");
f4a->Draw();
 f4b->Draw("same");//option for a multiple graph plot
f4a->SetTitle("");
p4->Draw();

c1->Update();
 c1->cd();


}
 GammaFun.C:1
 GammaFun.C:2
 GammaFun.C:3
 GammaFun.C:4
 GammaFun.C:5
 GammaFun.C:6
 GammaFun.C:7
 GammaFun.C:8
 GammaFun.C:9
 GammaFun.C:10
 GammaFun.C:11
 GammaFun.C:12
 GammaFun.C:13
 GammaFun.C:14
 GammaFun.C:15
 GammaFun.C:16
 GammaFun.C:17
 GammaFun.C:18
 GammaFun.C:19
 GammaFun.C:20
 GammaFun.C:21
 GammaFun.C:22
 GammaFun.C:23
 GammaFun.C:24
 GammaFun.C:25
 GammaFun.C:26
 GammaFun.C:27
 GammaFun.C:28
 GammaFun.C:29
 GammaFun.C:30
 GammaFun.C:31
 GammaFun.C:32
 GammaFun.C:33
 GammaFun.C:34
 GammaFun.C:35
 GammaFun.C:36
 GammaFun.C:37
 GammaFun.C:38
 GammaFun.C:39
 GammaFun.C:40
 GammaFun.C:41
 GammaFun.C:42
 GammaFun.C:43
 GammaFun.C:44
 GammaFun.C:45
 GammaFun.C:46
 GammaFun.C:47
 GammaFun.C:48
 GammaFun.C:49
 GammaFun.C:50
 GammaFun.C:51
 GammaFun.C:52
 GammaFun.C:53
 GammaFun.C:54
 GammaFun.C:55
 GammaFun.C:56
 GammaFun.C:57
 GammaFun.C:58
 GammaFun.C:59
 GammaFun.C:60
 GammaFun.C:61
 GammaFun.C:62
 GammaFun.C:63
 GammaFun.C:64
 GammaFun.C:65
 GammaFun.C:66
 GammaFun.C:67
 GammaFun.C:68
 GammaFun.C:69
 GammaFun.C:70
 GammaFun.C:71
 GammaFun.C:72
 GammaFun.C:73
 GammaFun.C:74
 GammaFun.C:75
 GammaFun.C:76
 GammaFun.C:77
 GammaFun.C:78
 GammaFun.C:79
 GammaFun.C:80
 GammaFun.C:81
 GammaFun.C:82
 GammaFun.C:83
 GammaFun.C:84
 GammaFun.C:85
 GammaFun.C:86
 GammaFun.C:87
 GammaFun.C:88
 GammaFun.C:89
 GammaFun.C:90
 GammaFun.C:91
 GammaFun.C:92
 GammaFun.C:93
 GammaFun.C:94
 GammaFun.C:95
 GammaFun.C:96
 GammaFun.C:97
 GammaFun.C:98
 GammaFun.C:99
 GammaFun.C:100
 GammaFun.C:101
 GammaFun.C:102
 GammaFun.C:103
 GammaFun.C:104
 GammaFun.C:105
 GammaFun.C:106
 GammaFun.C:107
 GammaFun.C:108
 GammaFun.C:109
 GammaFun.C:110
 GammaFun.C:111
 GammaFun.C:112
 GammaFun.C:113
 GammaFun.C:114
 GammaFun.C:115
 GammaFun.C:116
 GammaFun.C:117
 GammaFun.C:118
 GammaFun.C:119
 GammaFun.C:120
 GammaFun.C:121
 GammaFun.C:122
 GammaFun.C:123
 GammaFun.C:124
 GammaFun.C:125
 GammaFun.C:126
 GammaFun.C:127
 GammaFun.C:128
 GammaFun.C:129
 GammaFun.C:130
 GammaFun.C:131
 GammaFun.C:132
 GammaFun.C:133
 GammaFun.C:134
 GammaFun.C:135
 GammaFun.C:136
 GammaFun.C:137
 GammaFun.C:138
 GammaFun.C:139
thumb