ROOT logo
ROOT » TMVA » TMVA::MethodCommittee

class TMVA::MethodCommittee: public TMVA::MethodBase


 Boosting:

 the idea behind the boosting is, that signal events from the training
 sample, that end up in a background node (and vice versa) are given a
 larger weight than events that are in the correct leave node. This
 results in a re-weighed training event sample, with which then a new
 decision tree can be developed. The boosting can be applied several
 times (typically 100-500 times) and one ends up with a set of decision
 trees (a forest).

 Bagging:

 In this particular variant of the Boosted Decision Trees the boosting
 is not done on the basis of previous training results, but by a simple
 stochasitc re-sampling of the initial training event sample.

Function Members (Methods)

public:
virtual~MethodCommittee()
voidTObject::AbstractMethod(const char* method) const
voidTMVA::Configurable::AddOptionsXMLTo(void* parent) const
voidTMVA::MethodBase::AddOutput(TMVA::Types::ETreeType type, TMVA::Types::EAnalysisType analysisType)
voidTMVA::MethodBase::AddTargetsXMLTo(void* parent) const
voidTMVA::MethodBase::AddVarsXMLTo(void* parent) const
virtual voidAddWeightsXMLTo(void* parent) const
virtual voidTMVA::MethodBase::AddWeightsXMLTo(void* parent) const
virtual voidTObject::AppendPad(Option_t* option = "")
TDirectory*TMVA::MethodBase::BaseDir() const
Double_tBoost(TMVA::MethodBase*, UInt_t imember)
virtual voidTObject::Browse(TBrowser* b)
voidTMVA::Configurable::CheckForUnusedOptions() const
virtual voidTMVA::MethodBase::CheckSetup()
static TClass*Class()
static TClass*TMVA::MethodBase::Class()
static TClass*TMVA::Configurable::Class()
static TClass*TObject::Class()
static TClass*TMVA::IMethod::Class()
virtual const char*TObject::ClassName() const
virtual voidTObject::Clear(Option_t* = "")
virtual TObject*TObject::Clone(const char* newname = "") const
virtual Int_tTObject::Compare(const TObject* obj) const
TMVA::ConfigurableTMVA::Configurable::Configurable(const TString& theOption = "")
virtual voidTObject::Copy(TObject& object) const
virtual const TMVA::Ranking*CreateRanking()
virtual const TMVA::Ranking*TMVA::MethodBase::CreateRanking()
virtual const TMVA::Ranking*TMVA::IMethod::CreateRanking()
TMVA::DataSet*TMVA::MethodBase::Data() const
TMVA::DataSetInfo&TMVA::MethodBase::DataInfo() const
virtual voidDeclareOptions()
virtual voidTMVA::MethodBase::DeclareOptions()
virtual voidTMVA::IMethod::DeclareOptions()
virtual voidTObject::Delete(Option_t* option = "")MENU
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
Bool_tTMVA::MethodBase::DoRegression() const
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() constMENU
virtual TObject*TObject::DrawClone(Option_t* option = "") constMENU
virtual voidTObject::Dump() constMENU
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
TMVA::Types::EAnalysisTypeTMVA::MethodBase::GetAnalysisType() const
const vector<Double_t>&GetBoostWeights() const
const vector<TMVA::IMethod*>&GetCommittee() const
const char*TMVA::Configurable::GetConfigDescription() const
const char*TMVA::Configurable::GetConfigName() const
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
virtual Double_tTMVA::MethodBase::GetEfficiency(const TString&, TMVA::Types::ETreeType, Double_t& err)
const TMVA::Event*TMVA::MethodBase::GetEvent() const
const TMVA::Event*TMVA::MethodBase::GetEvent(const TMVA::Event* ev) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt, TMVA::Types::ETreeType type) const
const vector<TMVA::Event*>&TMVA::MethodBase::GetEventCollection(TMVA::Types::ETreeType type)
virtual const char*TObject::GetIconName() const
const TString&TMVA::MethodBase::GetInputLabel(Int_t i) const
const TString&TMVA::MethodBase::GetInputTitle(Int_t i) const
const TString&TMVA::MethodBase::GetInputVar(Int_t i) const
const TString&TMVA::MethodBase::GetJobName() const
virtual Double_tTMVA::MethodBase::GetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
Double_tTMVA::MethodBase::GetMean(Int_t ivar) const
const TString&TMVA::MethodBase::GetMethodName() const
TMVA::Types::EMVATMVA::MethodBase::GetMethodType() const
TStringTMVA::MethodBase::GetMethodTypeName() const
virtual Double_tGetMvaValue(Double_t* err = 0)
virtual Double_tTMVA::MethodBase::GetMvaValue(Double_t* err = 0)
virtual Double_tTMVA::IMethod::GetMvaValue(Double_t* err = 0)
virtual const char*TMVA::MethodBase::GetName() const
virtual const char*TMVA::Configurable::GetName() const
virtual const char*TObject::GetName() const
virtual const char*TMVA::IMethod::GetName() const
UInt_tTMVA::MethodBase::GetNEvents() const
UInt_tTMVA::MethodBase::GetNTargets() const
UInt_tTMVA::MethodBase::GetNvar() const
UInt_tTMVA::MethodBase::GetNVariables() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Option_t*TObject::GetOption() const
const TString&TMVA::Configurable::GetOptions() const
virtual Double_tTMVA::MethodBase::GetProba(Double_t mvaVal, Double_t ap_sig)
const TStringTMVA::MethodBase::GetProbaName() const
virtual Double_tTMVA::MethodBase::GetRarity(Double_t mvaVal, TMVA::Types::ESBType reftype = Types::kBackground) const
virtual const vector<Float_t>&TMVA::MethodBase::GetRegressionValues()
Double_tTMVA::MethodBase::GetRMS(Int_t ivar) const
virtual Double_tTMVA::MethodBase::GetROCIntegral(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
virtual Double_tTMVA::MethodBase::GetSeparation(TH1*, TH1*) const
virtual Double_tTMVA::MethodBase::GetSeparation(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
Double_tTMVA::MethodBase::GetSignalReferenceCut() const
virtual Double_tTMVA::MethodBase::GetSignificance() const
const TMVA::Event*TMVA::MethodBase::GetTestingEvent(Long64_t ievt) const
Double_tTMVA::MethodBase::GetTestTime() const
const TString&TMVA::MethodBase::GetTestvarName() const
virtual const char*TObject::GetTitle() const
virtual Double_tTMVA::MethodBase::GetTrainingEfficiency(const TString&)
const TMVA::Event*TMVA::MethodBase::GetTrainingEvent(Long64_t ievt) const
UInt_tTMVA::MethodBase::GetTrainingROOTVersionCode() const
TStringTMVA::MethodBase::GetTrainingROOTVersionString() const
UInt_tTMVA::MethodBase::GetTrainingTMVAVersionCode() const
TStringTMVA::MethodBase::GetTrainingTMVAVersionString() const
Double_tTMVA::MethodBase::GetTrainTime() const
TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler()
const TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler() const
virtual UInt_tTObject::GetUniqueID() const
vector<Double_t>GetVariableImportance()
Double_tGetVariableImportance(UInt_t ivar)
TStringTMVA::MethodBase::GetWeightFileName() const
Double_tTMVA::MethodBase::GetXmax(Int_t ivar) const
Double_tTMVA::MethodBase::GetXmin(Int_t ivar) const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual Bool_tHasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual Bool_tTMVA::MethodBase::HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual ULong_tTObject::Hash() const
Bool_tTMVA::MethodBase::HasMVAPdfs() const
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
virtual voidTMVA::MethodBase::Init()
virtual voidTMVA::IMethod::Init()
virtual voidTObject::Inspect() constMENU
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual TClass*TMVA::MethodBase::IsA() const
virtual TClass*TMVA::Configurable::IsA() const
virtual TClass*TObject::IsA() const
virtual TClass*TMVA::IMethod::IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
Bool_tTObject::IsOnHeap() const
virtual Bool_tTMVA::MethodBase::IsSignalLike()
virtual Bool_tTObject::IsSortable() const
Bool_tTObject::IsZombie() const
virtual voidTObject::ls(Option_t* option = "") const
virtual voidTMVA::MethodBase::MakeClass(const TString& classFileName = TString("")) const
virtual voidTMVA::IMethod::MakeClass(const TString& classFileName = TString("")) const
voidTObject::MayNotUse(const char* method) const
TDirectory*TMVA::MethodBase::MethodBaseDir() const
TMVA::MethodCommitteeMethodCommittee(TMVA::DataSetInfo& theData, const TString& theWeightFile, TDirectory* theTargetDir = 0)
TMVA::MethodCommitteeMethodCommittee(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& dsi, const TString& theOption, TDirectory* theTargetDir = 0)
virtual Bool_tTMVA::MethodBase::MonitorBoost(TMVA::MethodBoost*)
virtual Bool_tTMVA::IMethod::MonitorBoost(TMVA::MethodBoost* boost)
virtual Bool_tTObject::Notify()
static voidTObject::operator delete(void* ptr)
static voidTObject::operator delete(void* ptr, void* vp)
static voidTObject::operator delete[](void* ptr)
static voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TObject&TObject::operator=(const TObject& rhs)
TMVA::IMethod&TMVA::IMethod::operator=(const TMVA::IMethod&)
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTMVA::Configurable::ParseOptions()
virtual voidTObject::Pop()
virtual voidTObject::Print(Option_t* option = "") const
virtual voidTMVA::MethodBase::PrintHelpMessage() const
virtual voidTMVA::IMethod::PrintHelpMessage() const
voidTMVA::Configurable::PrintOptions() const
virtual voidProcessOptions()
virtual voidTMVA::MethodBase::ProcessOptions()
virtual voidTMVA::IMethod::ProcessOptions()
voidTMVA::MethodBase::ProcessSetup()
virtual Int_tTObject::Read(const char* name)
voidTMVA::Configurable::ReadOptionsFromStream(istream& istr)
voidTMVA::Configurable::ReadOptionsFromXML(void* node)
voidTMVA::MethodBase::ReadStateFromFile()
voidTMVA::MethodBase::ReadStateFromStream(istream& tf)
voidTMVA::MethodBase::ReadStateFromStream(TFile& rf)
voidTMVA::MethodBase::ReadStateFromXML(void* parent)
voidTMVA::MethodBase::ReadTargetsFromXML(void* tarnode)
voidTMVA::MethodBase::ReadVariablesFromXML(void* varnode)
voidTMVA::MethodBase::ReadVarsFromStream(istream& istr)
virtual voidReadWeightsFromStream(istream& istr)
virtual voidTMVA::MethodBase::ReadWeightsFromStream(istream&)
virtual voidTMVA::MethodBase::ReadWeightsFromStream(TFile&)
virtual voidTMVA::IMethod::ReadWeightsFromStream(istream&)
virtual voidReadWeightsFromXML(void*)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU
virtual voidTObject::SavePrimitive(basic_ostream<char,char_traits<char> >& out, Option_t* option = "")
virtual voidTMVA::MethodBase::SetAnalysisType(TMVA::Types::EAnalysisType type)
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
voidTMVA::Configurable::SetConfigDescription(const char* d)
voidTMVA::Configurable::SetConfigName(const char* n)
virtual voidTObject::SetDrawOption(Option_t* option = "")MENU
static voidTObject::SetDtorOnly(void* obj)
voidTMVA::MethodBase::SetMethodDir(TDirectory* methodDir)
voidTMVA::Configurable::SetMsgType(TMVA::EMsgType t)
static voidTObject::SetObjectStat(Bool_t stat)
voidTMVA::Configurable::SetOptions(const TString& s)
voidTMVA::MethodBase::SetSignalReferenceCut(Double_t cut)
voidTMVA::MethodBase::SetTestTime(Double_t testTime)
voidTMVA::MethodBase::SetTestvarName(const TString& v = "")
voidTMVA::MethodBase::SetTestvarPrefix(TString prefix)
voidTMVA::MethodBase::SetTrainTime(Double_t trainTime)
virtual voidTObject::SetUniqueID(UInt_t uid)
voidTMVA::MethodBase::SetupMethod()
virtual voidShowMembers(TMemberInspector& insp, char* parent)
virtual voidTMVA::MethodBase::ShowMembers(TMemberInspector& insp, char* parent)
virtual voidStreamer(TBuffer& b)
virtual voidTMVA::MethodBase::Streamer(TBuffer& b)
virtual voidTMVA::Configurable::Streamer(TBuffer& b)
virtual voidTObject::Streamer(TBuffer& b)
virtual voidTMVA::IMethod::Streamer(TBuffer& b)
voidStreamerNVirtual(TBuffer& b)
voidTMVA::MethodBase::StreamerNVirtual(TBuffer& b)
voidTMVA::Configurable::StreamerNVirtual(TBuffer& b)
voidTObject::StreamerNVirtual(TBuffer& b)
voidTMVA::IMethod::StreamerNVirtual(TBuffer& b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTMVA::MethodBase::TestClassification()
virtual voidTMVA::MethodBase::TestRegression(Double_t& bias, Double_t& biasT, Double_t& dev, Double_t& devT, Double_t& rms, Double_t& rmsT, Double_t& mInf, Double_t& mInfT, Double_t& corr, TMVA::Types::ETreeType type)
virtual voidTrain()
virtual voidTMVA::MethodBase::Train()
virtual voidTMVA::IMethod::Train()
voidTMVA::MethodBase::TrainMethod()
virtual voidTObject::UseCurrentStyle()
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const
virtual voidTMVA::MethodBase::WriteEvaluationHistosToFile()
virtual voidWriteMonitoringHistosToFile() const
virtual voidTMVA::MethodBase::WriteMonitoringHistosToFile() const
virtual voidTMVA::IMethod::WriteMonitoringHistosToFile() const
voidTMVA::Configurable::WriteOptionsToStream(ostream& o, const TString& prefix) const
voidWriteStateToFile() const
voidTMVA::MethodBase::WriteStateToFile() const
voidTMVA::MethodBase::WriteStateToStream(TFile& rf) const
voidTMVA::MethodBase::WriteStateToStream(ostream& tf, Bool_t isClass = kFALSE) const
voidTMVA::MethodBase::WriteStateToXML(void* parent) const
voidTMVA::MethodBase::WriteVarsToStream(ostream& o, const TString& prefix = "") const
virtual voidWriteWeightsToStream(ostream& o) const
virtual voidTMVA::MethodBase::WriteWeightsToStream(ostream&) const
virtual voidTMVA::MethodBase::WriteWeightsToStream(TFile&) const
virtual voidTMVA::IMethod::WriteWeightsToStream(ostream&) const
protected:
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
voidTMVA::Configurable::EnableLooseOptions(Bool_t b = kTRUE)
virtual voidGetHelpMessage() const
virtual voidTMVA::IMethod::GetHelpMessage() const
const TString&TMVA::MethodBase::GetInternalVarName(Int_t ivar) const
const TString&TMVA::MethodBase::GetOriginalVarName(Int_t ivar) const
const TString&TMVA::Configurable::GetReferenceFile() const
static TMVA::MethodBase*TMVA::MethodBase::GetThisBase()
Float_tTMVA::MethodBase::GetTWeight(const TMVA::Event* ev) const
const TString&TMVA::MethodBase::GetWeightFileDir() const
Bool_tTMVA::MethodBase::HasTrainingTree() const
Bool_tTMVA::MethodBase::Help() const
Bool_tTMVA::MethodBase::IgnoreEventsWithNegWeightsInTraining() const
Bool_tTMVA::MethodBase::IsConstructedFromWeightFile() const
Bool_tTMVA::MethodBase::IsNormalised() const
TMVA::MsgLogger&TMVA::Configurable::Log() const
Bool_tTMVA::Configurable::LooseOptionCheckingEnabled() const
virtual voidMakeClassSpecific(ostream&, const TString&) const
virtual voidTMVA::MethodBase::MakeClassSpecific(ostream&, const TString& = "") const
virtual voidTMVA::IMethod::MakeClassSpecific(ostream&, const TString&) const
virtual voidTMVA::MethodBase::MakeClassSpecificHeader(ostream&, const TString& = "") const
voidTObject::MakeZombie()
voidTMVA::Configurable::ResetSetFlag()
voidTMVA::MethodBase::SetNormalised(Bool_t norm)
voidTMVA::MethodBase::SetWeightFileDir(TString fileDir)
voidTMVA::MethodBase::SetWeightFileName(TString)
voidTMVA::MethodBase::Statistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&)
Bool_tTMVA::MethodBase::TxtWeightsOnly() const
Bool_tTMVA::MethodBase::Verbose() const
voidTMVA::Configurable::WriteOptionsReferenceToFile()
private:
Double_tAdaBoost(TMVA::MethodBase*)
Double_tBagging(UInt_t imember)
vector<Double_t>&GetBoostWeights()
vector<IMethod*>&GetCommittee()
virtual voidInit()

Data Members

private:
enum TMVA::MethodBase::EWeightFileType { kROOT
kTEXT
};
enum TMVA::MethodBase::ECutOrientation { kNegative
kPositive
};
enum TObject::EStatusBits { kCanDelete
kMustCleanup
kObjInCanvas
kIsReferenced
kHasUUID
kCannotPick
kNoContextMenu
kInvalidObject
};
enum TObject::[unnamed] { kIsOnHeap
kNotDeleted
kZombie
kBitMask
kSingleKey
kOverwrite
kWriteDelete
};
protected:
TMVA::Types::EAnalysisTypeTMVA::MethodBase::fAnalysisTypemethod-mode : true --> regression, false --> classification
UInt_tTMVA::MethodBase::fBackgroundClassindex of the Background-class
vector<TString>*TMVA::MethodBase::fInputVarsvector of input variables used in MVA
Int_tTMVA::MethodBase::fNbinsnumber of bins in representative histograms
Int_tTMVA::MethodBase::fNbinsHnumber of bins in evaluation histograms
TMVA::Ranking*TMVA::MethodBase::fRankingpointer to ranking object (created by derived classifiers)
vector<Float_t>*TMVA::MethodBase::fRegressionReturnValholds the return-value for the regression
UInt_tTMVA::MethodBase::fSignalClassindex of the Signal-class
Bool_tTMVA::MethodBase::fTxtWeightsOnlyif TRUE, write weights only to text files
private:
Double_tfBoostFactorntuple var: boost weight
TH1F*fBoostFactorHistweights applied in boosting
TStringfBoostTypestring specifying the boost type
vector<Double_t>fBoostWeightsthe weights applied in the individual boosts
vector<IMethod*>fCommitteethe collection of members
TH2F*fErrFractHisterror fraction vs member number
Double_tfErrorFractionntuple var: misclassification error fraction
Int_tfITreentuple var: ith member
TStringfMemberOptionthe options for that method
TMVA::Types::EMVAfMemberTypethe MVA method to be boosted
TTree*fMonitorNtuplemonitoring ntuple
UInt_tfNMembersnumber of members requested
Int_tfNnodesntuple var: nNodes
Bool_tfUseMemberDecisionuse binary information from IsSignal
Bool_tfUseWeightedMembersin the committee weighted from AdaBoost
vector<Double_t>fVariableImportancethe relative importance of the different variables

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

MethodCommittee(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& dsi, const TString& theOption, TDirectory* theTargetDir = 0)
 constructor
MethodCommittee(TMVA::DataSetInfo& theData, const TString& theWeightFile, TDirectory* theTargetDir = 0)
 constructor for calculating Committee-MVA using previously generatad decision trees
 the result of the previous training (the decision trees) are read in via the
 weightfile. Make sure the "theVariables" correspond to the ones used in
 creating the "weight"-file
Bool_t HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 FDA can handle classification with 2 classes and regression with one regression-target
void DeclareOptions()
 define the options (their key words) that can be set in the option string
 know options:
 NMembers           <string>     number of members in the committee
 UseMemberDecision  <bool>       use signal information from event (otherwise assume signal)
 UseWeightedMembers <bool>       use weighted trees or simple average in classification from the forest

 BoostType          <string>     boosting type
    available values are:        AdaBoost  <default>
                                 Bagging
void ProcessOptions()
 process user options
void Init( void )
 common initialisation with defaults for the Committee-Method
~MethodCommittee( void )
destructor
void WriteStateToFile() const
 Function to write options and weights to file
void Train( void )
 training
Double_t Boost(TMVA::MethodBase* , UInt_t imember)
 apply the boosting alogrithim (the algorithm is selecte via the the "option" given
 in the constructor. The return value is the boosting weight
Double_t AdaBoost(TMVA::MethodBase* )
 the AdaBoost implementation.
 a new training sample is generated by weighting
 events that are misclassified by the decision tree. The weight
 applied is w = (1-err)/err or more general:
            w = ((1-err)/err)^beta
 where err is the fracthin of misclassified events in the tree ( <0.5 assuming
 demanding the that previous selection was better than random guessing)
 and "beta" beeing a free parameter (standard: beta = 1) that modifies the
 boosting.
Double_t Bagging(UInt_t imember)
 call it Bootstrapping, re-sampling or whatever you like, in the end it is nothing
 else but applying "random boostweights" to each event.
void WriteWeightsToStream(ostream& o) const
 write the state of the method to an output stream
void AddWeightsXMLTo(void* parent) const
void ReadWeightsFromStream(istream& istr)
 read the state of the method from an input stream
Double_t GetMvaValue(Double_t* err = 0)
 return the MVA value (range [-1;1]) that classifies the
 event.according to the majority vote from the total number of
 decision trees
 In the literature I found that people actually use the
 weighted majority vote (using the boost weights) .. However I
 did not see any improvement in doing so :(
 --> this is currently switched off
void WriteMonitoringHistosToFile( void )
 here we could write some histograms created during the processing
 to the output file.
vector< Double_t > GetVariableImportance()
 return the relative variable importance, normalized to all
 variables together having the importance 1. The importance in
 evaluated as the total separation-gain that this variable had in
 the decision trees (weighted by the number of events)
Double_t GetVariableImportance(UInt_t ivar)
 return the variable importance
const TMVA::Ranking* CreateRanking()
 computes ranking of input variables
void MakeClassSpecific(ostream& , const TString& ) const
 write specific classifier response
void GetHelpMessage() const
 get help message text

 typical length of text line:
         "|--------------------------------------------------------------|"
void ReadWeightsFromXML(void* )
{}
const std::vector<TMVA::IMethod*>& GetCommittee()
 accessors
{ return fCommittee; }
const std::vector<Double_t>& GetBoostWeights()
{ return fBoostWeights; }
std::vector<IMethod*>& GetCommittee()
 accessors
{ return fCommittee; }
std::vector<Double_t>& GetBoostWeights()
{ return fBoostWeights; }