virtual | ~CostComplexityPruneTool() |
virtual TMVA::PruningInfo* | CalculatePruningInfo(TMVA::DecisionTree* dt, const vector<TMVA::Event*,allocator<TMVA::Event*> >* testEvents = NULL, Bool_t isAutomatic = kFALSE) |
TMVA::CostComplexityPruneTool | CostComplexityPruneTool(TMVA::SeparationBase* qualityIndex = NULL) |
TMVA::CostComplexityPruneTool | CostComplexityPruneTool(const TMVA::CostComplexityPruneTool&) |
TMVA::CostComplexityPruneTool& | operator=(const TMVA::CostComplexityPruneTool&) |
void | InitTreePruningMetaData(TMVA::DecisionTreeNode* n) |
TMVA::MsgLogger& | Log() const |
void | Optimize(TMVA::DecisionTree* dt, Double_t weights) |
TMVA::MsgLogger* | fLogger | ! output stream to save logging information |
Int_t | fOptimalK | ! the optimal index of the prune sequence |
vector<TMVA::DecisionTreeNode*,allocator<TMVA::DecisionTreeNode*> > | fPruneSequence | ! map of weakest links (i.e., branches to prune) -> pruning index |
vector<Double_t> | fPruneStrengthList | ! map of alpha -> pruning index |
vector<Double_t> | fQualityIndexList | ! map of R(T) -> pruning index |
TMVA::SeparationBase* | fQualityIndexTool | ! the quality index used to calculate R(t), R(T) = sum[t in ~T]{ R(t) } |
the constructor for the cost complexity prunig
initialise "meta data" for the pruning, like the "costcomplexity", the critical alpha, the minimal alpha down the tree, etc... for each node!!
after the critical alpha values (at which the corresponding nodes would be pruned away) had been established in the "InitMetaData" we need now: automatic pruning: find the value of "alpha" for which the test sample gives minimal error, on the tree with all nodes pruned that have alpha_critital < alpha, fixed parameter pruning