Roots::Bisection
Bisection algorithm, simplest algorithm for bracketing the roots of a function, but slowest one.
See the <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Root-Bracketing-Algorithms.html">GSL manual</A> for more information
@ingroup RootFinders
virtual | ~Steffenson() |
ROOT::Math::GSLRootFinderDeriv | ROOT::Math::GSLRootFinderDeriv::GSLRootFinderDeriv() |
virtual int | ROOT::Math::GSLRootFinderDeriv::Iterate() |
virtual int | ROOT::Math::GSLRootFinderDeriv::Iterations() const |
virtual const char* | ROOT::Math::GSLRootFinderDeriv::Name() const |
virtual double | ROOT::Math::GSLRootFinderDeriv::Root() const |
virtual int | ROOT::Math::GSLRootFinderDeriv::SetFunction(const ROOT::Math::IGradFunction& f, double xstart) |
virtual int | ROOT::Math::GSLRootFinderDeriv::SetFunction(const ROOT::Math::IGenFunction&, double, double) |
int | ROOT::Math::GSLRootFinderDeriv::SetFunction(ROOT::Math::GSLRootFinderDeriv::GSLFuncPointer f, ROOT::Math::GSLRootFinderDeriv::GSLFuncPointer df, ROOT::Math::GSLRootFinderDeriv::GSLFdFPointer fdf, void* p, double Root) |
virtual int | ROOT::Math::GSLRootFinderDeriv::Solve(int maxIter = 100, double absTol = 1E-3, double relTol = 1E-6) |
ROOT::Math::Roots::Steffenson | Steffenson() |
void | ROOT::Math::GSLRootFinderDeriv::FreeSolver() |
void | ROOT::Math::GSLRootFinderDeriv::SetSolver(ROOT::Math::GSLRootFdFSolver* s) |
ROOT::Math::Roots::Steffenson& | operator=(const ROOT::Math::Roots::Steffenson&) |
ROOT::Math::Roots::Steffenson | Steffenson(const ROOT::Math::Roots::Steffenson&) |
usually copying is non trivial, so we make this unaccessible