+
class ROOT::Math::KelvinFunctions
-
library: libMathMore
#include "KelvinFunctions.h"
Display options:
Show inherited
Show non-public

class ROOT::Math::KelvinFunctions

Function Members (Methods)

public:
virtual~KelvinFunctions()
static doubleBei(double x)
static doubleBer(double x)
static doubleDBei(double x)
static doubleDBer(double x)
static doubleDKei(double x)
static doubleDKer(double x)
static doubleF1(double x)
static doubleF2(double x)
static doubleG1(double x)
static doubleG2(double x)
static doubleKei(double x)
ROOT::Math::KelvinFunctionsKelvinFunctions()
ROOT::Math::KelvinFunctionsKelvinFunctions(const ROOT::Math::KelvinFunctions&)
static doubleKer(double x)
static doubleM(double x)
static doubleN(double x)
ROOT::Math::KelvinFunctions&operator=(const ROOT::Math::KelvinFunctions&)
static doublePhi(double x)
static doubleTheta(double x)

Data Members

protected:
static doublefgEpsilon
static doublefgMin

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

double Ber(double x)
Ber(x) = Ber_{0}(x) = Re#left[J_{0}#left(x e^{3#pii/4}#right)#right]
 where x is real, and J_{0}(z) is the zeroth-order Bessel
 function of the first kind.

 If x < fgMin (=20), Ber(x) is computed according to its polynomial
 approximation

Ber(x) = 1 + #sum_{n #geq 1}#frac{(-1)^{n}(x/2)^{4n}}{[(2n)!]^{2}}
 For x > fgMin, Ber(x) is computed according to its asymptotic
 expansion:

Ber(x) = #frac{e^{x/#sqrt{2}}}{#sqrt{2#pix}} [F1(x) cos#alpha + G1(x) sin#alpha] - #frac{1}{#pi}Kei(x)
 where #alpha = #frac{x}{#sqrt{2}} - #frac{#pi}{8}.
 See also F1(x) and G1(x).


output of MACRO_ROOT::Math::KelvinFunctions_Ber_1_5_c
double Bei(double x)
Bei(x) = Bei_{0}(x) = Im#left[J_{0}#left(x e^{3#pii/4}#right)#right]
 where x is real, and J_{0}(z) is the zeroth-order Bessel
 function of the first kind.

 If x < fgMin (=20), Bei(x) is computed according to its polynomial
 approximation

Bei(x) = #sum_{n #geq 0}#frac{(-1)^{n}(x/2)^{4n+2}}{[(2n+1)!]^{2}}
 For x > fgMin, Bei(x) is computed according to its asymptotic
 expansion:

Bei(x) = #frac{e^{x/#sqrt{2}}}{#sqrt{2#pix}} [F1(x) sin#alpha + G1(x) cos#alpha] - #frac{1}{#pi}Ker(x)
 where #alpha = #frac{x}{#sqrt{2}} - #frac{#pi}{8}
 See also F1(x) and G1(x).


output of MACRO_ROOT::Math::KelvinFunctions_Bei_1_5_c
double Ker(double x)
Ker(x) = Ker_{0}(x) = Re#left[K_{0}#left(x e^{3#pii/4}#right)#right]
 where x is real, and K_{0}(z) is the zeroth-order modified
 Bessel function of the second kind.

 If x < fgMin (=20), Ker(x) is computed according to its polynomial
 approximation

Ker(x) = -#left(ln #frac{|x|}{2} + #gamma#right) Ber(x) + #left(#frac{#pi}{4} - #delta#right) Bei(x) + #sum_{n #geq 0} #frac{(-1)^{n}}{[(2n)!]^{2}} H_{2n} #left(#frac{x}{2}#right)^{4n}
 where #gamma = 0.577215664... is the Euler-Mascheroni constant,
 #delta = #pi for x < 0 and is otherwise zero, and

H_{n} = #sum_{k = 1}^{n} #frac{1}{k}
 For x > fgMin, Ker(x) is computed according to its asymptotic
 expansion:

Ker(x) = #sqrt{#frac{#pi}{2x}} e^{-x/#sqrt{2}} [F2(x) cos#beta + G2(x) sin#beta]
 where #beta = #frac{x}{#sqrt{2}} + #frac{#pi}{8}
 See also F2(x) and G2(x).


output of MACRO_ROOT::Math::KelvinFunctions_Ker_1_8_c
double Kei(double x)
Kei(x) = Kei_{0}(x) = Im#left[K_{0}#left(x e^{3#pii/4}#right)#right]
 where x is real, and K_{0}(z) is the zeroth-order modified
 Bessel function of the second kind.

 If x < fgMin (=20), Kei(x) is computed according to its polynomial
 approximation

Kei(x) = -#left(ln #frac{x}{2} + #gamma#right) Bei(x) - #left(#frac{#pi}{4} - #delta#right) Ber(x) + #sum_{n #geq 0} #frac{(-1)^{n}}{[(2n)!]^{2}} H_{2n} #left(#frac{x}{2}#right)^{4n+2}
 where #gamma = 0.577215664... is the Euler-Mascheroni constant,
 #delta = #pi for x < 0 and is otherwise zero, and

H_{n} = #sum_{k = 1}^{n} #frac{1}{k}
 For x > fgMin, Kei(x) is computed according to its asymptotic
 expansion:

Kei(x) = - #sqrt{#frac{#pi}{2x}} e^{-x/#sqrt{2}} [F2(x) sin#beta + G2(x) cos#beta]
 where #beta = #frac{x}{#sqrt{2}} + #frac{#pi}{8}
 See also F2(x) and G2(x).


output of MACRO_ROOT::Math::KelvinFunctions_Kei_1_8_c
double DBer(double x)
 Calculates the first derivative of Ber(x).

 If x < fgMin (=20), DBer(x) is computed according to the derivative of
 the polynomial approximation of Ber(x). Otherwise it is computed
 according to its asymptotic expansion

#frac{d}{dx} Ber(x) = M cos#left(#theta - #frac{#pi}{4}#right)
 See also M(x) and Theta(x).


output of MACRO_ROOT::Math::KelvinFunctions_DBer_1_1_c
double DBei(double x)
 Calculates the first derivative of Bei(x).

 If x < fgMin (=20), DBei(x) is computed according to the derivative of
 the polynomial approximation of Bei(x). Otherwise it is computed
 according to its asymptotic expansion

#frac{d}{dx} Bei(x) = M sin#left(#theta - #frac{#pi}{4}#right)
 See also M(x) and Theta(x).


output of MACRO_ROOT::Math::KelvinFunctions_DBei_1_1_c
double DKer(double x)
 Calculates the first derivative of Ker(x).

 If x < fgMin (=20), DKer(x) is computed according to the derivative of
 the polynomial approximation of Ker(x). Otherwise it is computed
 according to its asymptotic expansion

#frac{d}{dx} Ker(x) = N cos#left(#phi - #frac{#pi}{4}#right)
 See also N(x) and Phi(x).


output of MACRO_ROOT::Math::KelvinFunctions_DKer_1_1_c
double DKei(double x)
 Calculates the first derivative of Kei(x).

 If x < fgMin (=20), DKei(x) is computed according to the derivative of
 the polynomial approximation of Kei(x). Otherwise it is computed
 according to its asymptotic expansion

#frac{d}{dx} Kei(x) = N sin#left(#phi - #frac{#pi}{4}#right)
 See also N(x) and Phi(x).


output of MACRO_ROOT::Math::KelvinFunctions_DKei_1_1_c
double F1(double x)
 Utility function appearing in the calculations of the Kelvin
 functions Bei(x) and Ber(x) (and their derivatives). F1(x) is given by

F1(x) = 1 + #sum_{n #geq 1} #frac{#prod_{m=1}^{n}(2m - 1)^{2}}{n! (8x)^{n}} cos#left(#frac{n#pi}{4}#right)
double F2(double x)
 Utility function appearing in the calculations of the Kelvin
 functions Kei(x) and Ker(x) (and their derivatives). F2(x) is given by

F2(x) = 1 + #sum_{n #geq 1} (-1)^{n} #frac{#prod_{m=1}^{n}(2m - 1)^{2}}{n! (8x)^{n}} cos#left(#frac{n#pi}{4}#right)
double G1(double x)
 Utility function appearing in the calculations of the Kelvin
 functions Bei(x) and Ber(x) (and their derivatives). G1(x) is given by

G1(x) = #sum_{n #geq 1} #frac{#prod_{m=1}^{n}(2m - 1)^{2}}{n! (8x)^{n}} sin#left(#frac{n#pi}{4}#right)
double G2(double x)
 Utility function appearing in the calculations of the Kelvin
 functions Kei(x) and Ker(x) (and their derivatives). G2(x) is given by

G2(x) = #sum_{n #geq 1} (-1)^{n} #frac{#prod_{m=1}^{n}(2m - 1)^{2}}{n! (8x)^{n}} sin#left(#frac{n#pi}{4}#right)
double M(double x)
 Utility function appearing in the asymptotic expansions of DBer(x) and
 DBei(x). M(x) is given by

M(x) = #frac{e^{x/#sqrt{2}}}{#sqrt{2#pix}}#left(1 + #frac{1}{8#sqrt{2} x} + #frac{1}{256 x^{2}} - #frac{399}{6144#sqrt{2} x^{3}} + O#left(#frac{1}{x^{4}}#right)#right)
double Theta(double x)
 Utility function appearing in the asymptotic expansions of DBer(x) and
 DBei(x). #theta(x) # is given by

#theta(x) = #frac{x}{#sqrt{2}} - #frac{#pi}{8} - #frac{1}{8#sqrt{2} x} - #frac{1}{16 x^{2}} - #frac{25}{384#sqrt{2} x^{3}} + O#left(#frac{1}{x^{5}}#right)
double N(double x)
 Utility function appearing in the asymptotic expansions of DKer(x) and
 DKei(x). (x) is given by

N(x) = #sqrt{#frac{#pi}{2x}} e^{-x/#sqrt{2}} #left(1 - #frac{1}{8#sqrt{2} x} + #frac{1}{256 x^{2}} + #frac{399}{6144#sqrt{2} x^{3}} + O#left(#frac{1}{x^{4}}#right)#right)
double Phi(double x)
 Utility function appearing in the asymptotic expansions of DKer(x) and
 DKei(x). #phi(x) # is given by

#phi(x) = - #frac{x}{#sqrt{2}} - #frac{#pi}{8} + #frac{1}{8#sqrt{2} x} - #frac{1}{16 x^{2}} + #frac{25}{384#sqrt{2} x^{3}} + O#left(#frac{1}{x^{5}}#right)
virtual ~KelvinFunctions()
 Include and empty virtual desctructor to eliminate compiler warnings
{}

Last update: Mon Jun 25 19:39:39 2007

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.