| ~BoostY() | |
| ROOT::Math::BoostY::Scalar | Beta() const |
| ROOT::Math::BoostY::XYZVector | BetaVector() const |
| ROOT::Math::BoostY | BoostY() |
| ROOT::Math::BoostY | BoostY(ROOT::Math::BoostY::Scalar beta_y) |
| ROOT::Math::BoostY | BoostY(const ROOT::Math::BoostY&) |
| ROOT::Math::BoostY::Scalar | Gamma() const |
| void | GetComponents(ROOT::Math::BoostY::Scalar& beta_y) const |
| void | GetLorentzRotation(ROOT::Math::BoostY::Scalar* r) const |
| ROOT::Math::BoostY | Inverse() const |
| void | Invert() |
| bool | operator!=(const ROOT::Math::BoostY& rhs) const |
| ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> > | operator()(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >& v) const |
| ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> > | operator*(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >& v) const |
| ROOT::Math::BoostY& | operator=(const ROOT::Math::BoostY&) |
| bool | operator==(const ROOT::Math::BoostY& rhs) const |
| void | Rectify() |
| void | SetBeta(ROOT::Math::BoostY::Scalar beta) |
| void | SetComponents(ROOT::Math::BoostY::Scalar beta_y) |

Assuming the representation of this is close to a true Lorentz Rotation, but may have drifted due to round-off error from many operations, this forms an "exact" orthosymplectic matrix for the Lorentz Rotation again.
apply boost to a LV
========== Constructors and Assignment ===================== Default constructor (identity transformation)
Set the given beta of the Boost
{ SetComponents(beta); }Overload operator * for rotation on a vector