library: libVMC
#include "TVirtualMC.h"

TVirtualMC


class description - header file - source file - inheritance tree (.pdf)

class TVirtualMC : public TNamed

Inheritance Chart:
TObject
<-
TNamed
<-
TVirtualMC
<-
TGeant3
<-
TGeant3f77
TGeant3TGeo
 
    This is an abstract class, constructors will not be documented.
    Look at the header to check for available constructors.

    private:
TVirtualMC& operator=(const TVirtualMC&) public:
virtual ~TVirtualMC() virtual void BuildPhysics() static TClass* Class() virtual Int_t CurrentEvent() const virtual Int_t CurrentMaterial(Float_t& a, Float_t& z, Float_t& dens, Float_t& radl, Float_t& absl) const virtual Int_t CurrentMedium() const virtual Int_t CurrentVolID(Int_t& copyNo) const virtual const char* CurrentVolName() const virtual Int_t CurrentVolOffID(Int_t off, Int_t& copyNo) const virtual const char* CurrentVolOffName(Int_t off) const virtual const char* CurrentVolPath() virtual void DefaultRange() virtual Bool_t DefineIon(const char* name, Int_t Z, Int_t A, Int_t Q, Double_t excEnergy, Double_t mass = 0.) virtual void DefineOpSurface(const char* name, EMCOpSurfaceModel model, EMCOpSurfaceType surfaceType, EMCOpSurfaceFinish surfaceFinish, Double_t sigmaAlpha) virtual Bool_t DefineParticle(Int_t pdg, const char* name, TMCParticleType pType, Double_t mass, Double_t charge, Double_t lifetime) virtual void DrawOneSpec(const char* name) virtual Double_t Edep() const virtual Double_t Etot() const virtual void ForceDecayTime(Float_t) virtual void Gckmat(Int_t imed, char* name) virtual void Gdhead(Int_t, const char*, Double_t = 0) virtual void Gdman(Double_t, Double_t, const char*) virtual void Gdopt(const char*, const char*) virtual void Gdraw(const char*, Double_t theta = 30, Double_t phi = 30, Double_t psi = 0, Double_t u0 = 10, Double_t v0 = 10, Double_t ul = 0.01, Double_t vl = 0.01) virtual void Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) virtual void Gdtom(Double_t* xd, Double_t* xm, Int_t iflag) virtual TVirtualMCDecayer* GetDecayer() const virtual Bool_t GetMaterial(const TString& volumeName, TString& name, Int_t& imat, Double_t& a, Double_t& z, Double_t& density, Double_t& radl, Double_t& inter, TArrayD& par) virtual Int_t GetMaxNStep() const static TVirtualMC* GetMC() virtual Bool_t GetMedium(const TString& volumeName, TString& name, Int_t& imed, Int_t& nmat, Int_t& isvol, Int_t& ifield, Double_t& fieldm, Double_t& tmaxfd, Double_t& stemax, Double_t& deemax, Double_t& epsil, Double_t& stmin, TArrayD& par) virtual Int_t GetMedium() const virtual TRandom* GetRandom() const virtual void GetSecondary(Int_t isec, Int_t& particleId, TLorentzVector& position, TLorentzVector& momentum) virtual Bool_t GetShape(const TString& volumePath, TString& shapeType, TArrayD& par) virtual TVirtualMCStack* GetStack() const virtual Bool_t GetTransformation(const TString& volumePath, TGeoHMatrix& matrix) virtual void Gfmate(Int_t imat, char* name, Float_t& a, Float_t& z, Float_t& dens, Float_t& radl, Float_t& absl, Float_t* ubuf, Int_t& nbuf) virtual void Gfmate(Int_t imat, char* name, Double_t& a, Double_t& z, Double_t& dens, Double_t& radl, Double_t& absl, Double_t* ubuf, Int_t& nbuf) virtual void Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) virtual void Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) virtual void Gsatt(const char* name, const char* att, Int_t val) virtual void Gsbool(const char* onlyVolName, const char* manyVolName) virtual void Gsdvn(const char* name, const char* mother, Int_t ndiv, Int_t iaxis) virtual void Gsdvn2(const char* name, const char* mother, Int_t ndiv, Int_t iaxis, Double_t c0i, Int_t numed) virtual void Gsdvt(const char* name, const char* mother, Double_t step, Int_t iaxis, Int_t numed, Int_t ndvmx) virtual void Gsdvt2(const char* name, const char* mother, Double_t step, Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) virtual void Gsord(const char* name, Int_t iax) virtual void Gspos(const char* name, Int_t nr, const char* mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char* konly = "ONLY") virtual void Gsposp(const char* name, Int_t nr, const char* mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char* konly, Float_t* upar, Int_t np) virtual void Gsposp(const char* name, Int_t nr, const char* mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char* konly, Double_t* upar, Int_t np) virtual void Gstpar(Int_t itmed, const char* param, Double_t parval) virtual Int_t Gsvolu(const char* name, const char* shape, Int_t nmed, Float_t* upar, Int_t np) virtual Int_t Gsvolu(const char* name, const char* shape, Int_t nmed, Double_t* upar, Int_t np) virtual Int_t IdFromPDG(Int_t pdg) const virtual void Init() virtual void InitLego() virtual TClass* IsA() const virtual Bool_t IsNewTrack() const virtual Bool_t IsRootGeometrySupported() const virtual Bool_t IsTrackAlive() const virtual Bool_t IsTrackDisappeared() const virtual Bool_t IsTrackEntering() const virtual Bool_t IsTrackExiting() const virtual Bool_t IsTrackInside() const virtual Bool_t IsTrackOut() const virtual Bool_t IsTrackStop() const virtual void Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Float_t* buf, Int_t nwbuf) virtual void Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Double_t* buf, Int_t nwbuf) virtual void Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, Double_t thetaY, Double_t phiY, Double_t thetaZ, Double_t phiZ) virtual Double_t MaxStep() const virtual void Medium(Int_t& kmed, const char* name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Float_t* ubuf, Int_t nbuf) virtual void Medium(Int_t& kmed, const char* name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Double_t* ubuf, Int_t nbuf) virtual void Mixture(Int_t& kmat, const char* name, Float_t* a, Float_t* z, Double_t dens, Int_t nlmat, Float_t* wmat) virtual void Mixture(Int_t& kmat, const char* name, Double_t* a, Double_t* z, Double_t dens, Int_t nlmat, Double_t* wmat) virtual Int_t NofVolDaughters(const char* volName) const virtual Int_t NofVolumes() const virtual Int_t NSecondaries() const virtual Double_t ParticleCharge(Int_t pdg) const virtual Double_t ParticleLifeTime(Int_t pdg) const virtual Double_t ParticleMass(Int_t pdg) const virtual TMCParticleType ParticleMCType(Int_t pdg) const virtual TString ParticleName(Int_t pdg) const virtual Int_t PDGFromId(Int_t id) const virtual void ProcessEvent() virtual Bool_t ProcessRun(Int_t nevent) virtual TMCProcess ProdProcess(Int_t isec) const virtual Bool_t SecondariesAreOrdered() const virtual void SetBorderSurface(const char* name, const char* vol1Name, int vol1CopyNo, const char* vol2Name, int vol2CopyNo, const char* opSurfaceName) virtual void SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov, Float_t* absco, Float_t* effic, Float_t* rindex) virtual void SetCerenkov(Int_t itmed, Int_t npckov, Double_t* ppckov, Double_t* absco, Double_t* effic, Double_t* rindex) virtual void SetClipBox(const char*, Double_t = -9999, Double_t = 0, Double_t = -9999, Double_t = 0, Double_t = -9999, Double_t = 0) virtual Bool_t SetCut(const char* cutName, Double_t cutValue) virtual void SetExternalDecayer(TVirtualMCDecayer* decayer) virtual void SetMaterialProperty(Int_t itmed, const char* propertyName, Int_t np, Double_t* pp, Double_t* values) virtual void SetMaterialProperty(Int_t itmed, const char* propertyName, Double_t value) virtual void SetMaterialProperty(const char* surfaceName, const char* propertyName, Int_t np, Double_t* pp, Double_t* values) virtual void SetMaxNStep(Int_t) virtual void SetMaxStep(Double_t) virtual Bool_t SetProcess(const char* flagName, Int_t flagValue) virtual void SetRandom(TRandom* random) virtual void SetRootGeometry() virtual void SetSkinSurface(const char* name, const char* volName, const char* opSurfaceName) virtual void SetStack(TVirtualMCStack* stack) virtual void SetUserDecay(Int_t pdg) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual Int_t StepProcesses(TArrayI& proc) const virtual void StopEvent() virtual void StopRun() virtual void StopTrack() virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) virtual Double_t TrackCharge() const virtual Double_t TrackLength() const virtual Double_t TrackMass() const virtual void TrackMomentum(TLorentzVector& momentum) const virtual void TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& etot) const virtual Int_t TrackPid() const virtual void TrackPosition(TLorentzVector& position) const virtual void TrackPosition(Double_t& x, Double_t& y, Double_t& z) const virtual Double_t TrackStep() const virtual Double_t TrackTime() const virtual Int_t VolDaughterCopyNo(const char* volName, Int_t i) const virtual const char* VolDaughterName(const char* volName, Int_t i) const virtual Int_t VolId(const Text_t* volName) const virtual Int_t VolId2Mate(Int_t id) const virtual const char* VolName(Int_t id) const virtual void WriteEuclid(const char* filnam, const char* topvol, Int_t number, Int_t nlevel) virtual Double_t Xsec(char*, Double_t, Int_t, Int_t)

Data Members

    private:
static TVirtualMC* fgMC Monte Carlo singleton instance TVirtualMCStack* fStack ! Particles stack TVirtualMCDecayer* fDecayer ! External decayer TRandom* fRandom ! Random number generator protected:
TVirtualMCApplication* fApplication ! User MC application

Class Description

______________________________________________________________________________
   Virtual MC provides a virtual interface to Monte Carlo.
   It enables the user to build a virtual Monte Carlo application
   independent of any actual underlying Monte Carlo implementation itself.

   A user will have to implement a class derived from the abstract
   Monte Carlo application class, and provide functions like
   ConstructGeometry(), BeginEvent(), FinishEvent(), ... .
   The concrete Monte Carlo (Geant3, Geant4) is selected at run time -
   when processing a ROOT macro where the concrete Monte Carlo is instantiated.
______________________________________________________________________________
~TVirtualMC()
 Destructor

void SetStack(TVirtualMCStack* stack)
 Set particles stack.

void SetExternalDecayer(TVirtualMCDecayer* decayer)
 Set external decayer.

void SetRandom(TRandom* random)
 Set random number generator.

void SetMaterialProperty( Int_t /*itmed*/, const char* /*propertyName*/, Int_t /*np*/, Double_t* /*pp*/, Double_t* /*values*/)
void SetMaterialProperty( Int_t /*itmed*/, const char* /*propertyName*/, Double_t /*value*/)
void SetMaterialProperty( const char* /*surfaceName*/, const char* /*propertyName*/, Int_t /*np*/, Double_t* /*pp*/, Double_t* /*values*/)

TVirtualMC* GetMC()
 Static access method
Bool_t IsRootGeometrySupported()
 Info about supporting geometry defined via Root
void Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, Float_t &dens, Float_t &radl, Float_t &absl, Float_t* ubuf, Int_t& nbuf)
 Return parameters for material specified by material number imat
void Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, Double_t &dens, Double_t &radl, Double_t &absl, Double_t* ubuf, Int_t& nbuf)
  Return parameters for material specified by material number imat
 (in double precision)
void Gckmat(Int_t imed, char* name)
 Check the parameters of a tracking medium
void Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Float_t* buf, Int_t nwbuf)
 Define a material
 kmat   number assigned to the material
 name   material name
 a      atomic mass in au
 z      atomic number
 dens   density in g/cm3
 absl   absorption length in cm;
               if >=0 it is ignored and the program
               calculates it, if <0. -absl is taken
 radl   radiation length in cm
               if >=0 it is ignored and the program
               calculates it, if <0. -radl is taken
 buf    pointer to an array of user words
 nwbuf  number of user words
void Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Double_t* buf, Int_t nwbuf)
 The same as previous but in double precision
void Mixture(Int_t& kmat, const char *name, Float_t *a, Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat)
 Define mixture or compound
 with a number kmat composed by the basic nlmat materials defined
 by arrays a, z and wmat

 If nlmat > 0 then wmat contains the proportion by
 weights of each basic material in the mixture.

 If nlmat < 0 then wmat contains the number of atoms
 of a given kind into the molecule of the compound.
 In this case, wmat in output is changed to relative
 weights.
void Mixture(Int_t& kmat, const char *name, Double_t *a, Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat)
 The same as previous but in double precision
void Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Float_t* ubuf, Int_t nbuf)
 Define a medium.
 kmed      tracking medium number assigned
 name      tracking medium name
 nmat      material number
 isvol     sensitive volume flag
 ifield    magnetic field:
                  - ifield = 0 if no magnetic field;
                  - ifield = -1 if user decision in guswim;
                  - ifield = 1 if tracking performed with g3rkuta;
                  - ifield = 2 if tracking performed with g3helix;
                  - ifield = 3 if tracking performed with g3helx3.
 fieldm    max. field value (kilogauss)
 tmaxfd    max. angle due to field (deg/step)
 stemax    max. step allowed
 deemax    max. fraction of energy lost in a step
 epsil     tracking precision (cm)
 stmin     min. step due to continuous processes (cm)
 ubuf      pointer to an array of user words
 nbuf      number of user words
void Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Double_t* ubuf, Int_t nbuf)
 The same as previous but in double precision
void Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, Double_t thetaY, Double_t phiY, Double_t thetaZ, Double_t phiZ)
 Define a rotation matrix
 krot     rotation matrix number assigned
 thetaX   polar angle for axis X
 phiX     azimuthal angle for axis X
 thetaY   polar angle for axis Y
 phiY     azimuthal angle for axis Y
 thetaZ   polar angle for axis Z
 phiZ     azimuthal angle for axis Z
void Gstpar(Int_t itmed, const char *param, Double_t parval)
 Change the value of cut or mechanism param
 to a new value parval for tracking medium itmed.
 In Geant3, the  data  structure JTMED contains the standard tracking
 parameters (CUTS and flags to control the physics processes)  which
 are used  by default for all tracking media.
 It is possible to redefine individually with this funstion any of these
 parameters for a given tracking medium.
  itmed   tracking medium number
  param   is a character string (variable name)
  parval  must be given as a floating point.
Int_t Gsvolu(const char *name, const char *shape, Int_t nmed, Float_t *upar, Int_t np)
 Create a new volume
 name   Volume name
 shape  Volume type
 nmed   Tracking medium number
 np     Number of shape parameters
 upar   Vector containing shape parameters
Int_t Gsvolu(const char *name, const char *shape, Int_t nmed, Double_t *upar, Int_t np)
 The same as previous but in double precision
void Gsdvn(const char *name, const char *mother, Int_t ndiv, Int_t iaxis)
 Create a new volume by dividing an existing one.
 It divides a previously defined volume
 name   Volume name
 mother Mother volume name
 ndiv   Number of divisions
 iaxis  Axis value:
               X,Y,Z of CAXIS will be translated to 1,2,3 for IAXIS.
void Gsdvn2(const char *name, const char *mother, Int_t ndiv, Int_t iaxis, Double_t c0i, Int_t numed)
 Create a new volume by dividing an existing one.
 Divide mother into ndiv divisions called name
 along axis iaxis starting at coordinate value c0i.
 The new volume created will be medium number numed.
void Gsdvt(const char *name, const char *mother, Double_t step, Int_t iaxis, Int_t numed, Int_t ndvmx)
 Create a new volume by dividing an existing one
 Divide mother into divisions called name along
 axis iaxis in steps of step. If not exactly divisible
 will make as many as possible and will center them
 with respect to the mother. Divisions will have medium
 number numed. If numed is 0, numed of mother is taken.
 ndvmx is the expected maximum number of divisions
 (If 0, no protection tests are performed in Geant3)
void Gsdvt2(const char *name, const char *mother, Double_t step, Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx)
 Create a new volume by dividing an existing one
 Divides mother into divisions called name along
 axis iaxis starting at coordinate value c0 with step
 size step.
 The new volume created will have medium number numed.
 If numed is 0, numed of mother is taken.
 ndvmx is the expected maximum number of divisions
 (If 0, no protection tests are performed in Geant3)
void Gsord(const char *name, Int_t iax)
 Flag volume name whose contents will have to be ordered
 along axis iax, by setting the search flag to -iax
 (Geant3 only)
void Gspos(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly="ONLY")
 Position a volume into an existing one.
 It positions a previously defined volume in the mother.
   name   Volume name
   nr     Copy number of the volume
   mother Mother volume name
   x      X coord. of the volume in mother ref. sys.
   y      Y coord. of the volume in mother ref. sys.
   z      Z coord. of the volume in mother ref. sys.
   irot   Rotation matrix number w.r.t. mother ref. sys.
   konly  ONLY/MANY flag
void Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Float_t *upar, Int_t np)
 Place a copy of generic volume name with user number
  nr inside mother, with its parameters upar(1..np)
void Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Double_t *upar, Int_t np)
 The same as previous but in double precision
void Gsbool(const char* onlyVolName, const char* manyVolName)
 Helper function for resolving MANY.
 Specify the ONLY volume that overlaps with the
 specified MANY and has to be substracted.
 (Geant4 only)
void SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov, Float_t *absco, Float_t *effic, Float_t *rindex)
 Define the tables for UV photon tracking in medium itmed.
 Please note that it is the user's responsibility to
 provide all the coefficients:
  itmed       Tracking medium number
  npckov      Number of bins of each table
  ppckov      Value of photon momentum (in GeV)
  absco       Absorption coefficients
                     dielectric: absorption length in cm
                     metals    : absorption fraction (0<=x<=1)
  effic       Detection efficiency for UV photons
  rindex      Refraction index (if=0 metal)
void SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov, Double_t *absco, Double_t *effic, Double_t *rindex)
 The same as previous but in double precision
void DefineOpSurface(const char* name, EMCOpSurfaceModel model, EMCOpSurfaceType surfaceType, EMCOpSurfaceFinish surfaceFinish, Double_t sigmaAlpha)
 Define the optical surface
 name           surface name
 model          selection of model (see #EMCOpSurfaceModel values)
 surfaceType    surface type (see #EMCOpSurfaceType values)
 surfaceFinish  surface quality (see #EMCOpSurfaceType values)
 sigmaAlpha     an unified model surface parameter
 (Geant4 only)
void SetBorderSurface(const char* name, const char* vol1Name, int vol1CopyNo, const char* vol2Name, int vol2CopyNo, const char* opSurfaceName)
 Define the optical surface border
 name        border surface name
 vol1Name    first volume name
 vol1CopyNo  first volume copy number
 vol2Name    second volume name
 vol2CopyNo  second volume copy number
 opSurfaceName  name of optical surface which this border belongs to
 (Geant4 only)
void SetSkinSurface(const char* name, const char* volName, const char* opSurfaceName)
 Define the optical skin surface
 name        skin surface name
 volName     volume name
 opSurfaceName  name of optical surface which this border belongs to
 (Geant4 only)
Bool_t GetTransformation(const TString& volumePath, TGeoHMatrix& matrix)
 Return the transformation matrix between the volume specified by
 the path volumePath and the top or master volume.
Bool_t GetShape(const TString& volumePath, TString& shapeType, TArrayD& par)
 Return the name of the shape (shapeType)  and its parameters par
 for the volume specified by the path volumePath .
Bool_t GetMaterial(const TString& volumeName, TString& name, Int_t& imat, Double_t& a, Double_t& z, Double_t& density, Double_t& radl, Double_t& inter, TArrayD& par)
 Return the material parameters for the volume specified by
 the volumeName.
Bool_t GetMedium(const TString& volumeName, TString& name, Int_t& imed, Int_t& nmat, Int_t& isvol, Int_t& ifield, Double_t& fieldm, Double_t& tmaxfd, Double_t& stemax, Double_t& deemax, Double_t& epsil, Double_t& stmin, TArrayD& par)
 Return the medium parameters for the volume specified by the
 volumeName.
void DrawOneSpec(const char* name)
 Deprecated - Geant3
void Gsatt(const char* name, const char* att, Int_t val)
 Deprecated - Geant3
void Gdraw(const char*,Double_t theta = 30, Double_t phi = 30, Double_t psi = 0, Double_t u0 = 10, Double_t v0 = 10, Double_t ul = 0.01, Double_t vl = 0.01)
 Deprecated - Geant3
void WriteEuclid(const char* filnam, const char* topvol, Int_t number, Int_t nlevel)
 Write out the geometry of the detector in EUCLID file format
 filnam  file name - will be with the extension .euc                 *
 topvol  volume name of the starting node
 number  copy number of topvol (relevant for gsposp)
 nlevel  number of  levels in the tree structure
                to be written out, starting from topvol
 (Geant3 only)
void SetRootGeometry()
 Set geometry from Root (built via TGeo)
Int_t VolId(const Text_t* volName)
 Return the unique numeric identifier for volume name volName
const char* VolName(Int_t id)
 Return the volume name for a given volume identifier id
Int_t NofVolumes()
 Return total number of volumes in the geometry
Int_t VolId2Mate(Int_t id)
 Return material number for a given volume id
Int_t NofVolDaughters(const char* volName)
 Return number of daughters of the volume specified by volName
const char* VolDaughterName(const char* volName, Int_t i)
 Return the name of i-th daughter of the volume specified by volName
Int_t VolDaughterCopyNo(const char* volName, Int_t i)
 Return the copyNo of i-th daughter of the volume specified by volName
Bool_t SetCut(const char* cutName, Double_t cutValue)
 Set transport cuts for particles
Bool_t SetProcess(const char* flagName, Int_t flagValue)
 Set process control
Bool_t DefineParticle(Int_t pdg, const char* name, TMCParticleType pType, Double_t mass, Double_t charge, Double_t lifetime)
 Set a user defined particle
 Function is ignored if particle with specified pdg
 already exists and error report is printed.
Bool_t DefineIon(const char* name, Int_t Z, Int_t A, Int_t Q, Double_t excEnergy, Double_t mass = 0.)
 Set a user defined ion.
Double_t Xsec(char*, Double_t, Int_t, Int_t)
 Calculate X-sections
 (Geant3 only)
Int_t IdFromPDG(Int_t pdg)
 Return MC specific code from a PDG and pseudo ENDF code (pdg)
Int_t PDGFromId(Int_t id)
 Return PDG code and pseudo ENDF code from MC specific code (id)
TString ParticleName(Int_t pdg)
 Return name of the particle specified by pdg.
Double_t ParticleMass(Int_t pdg)
 Return mass of the particle specified by pdg.
Double_t ParticleCharge(Int_t pdg)
 Return charge (in e units) of the particle specified by pdg.
Double_t ParticleLifeTime(Int_t pdg)
 Return life time of the particle specified by pdg.
TMCParticleType ParticleMCType(Int_t pdg)
 Return VMC type of the particle specified by pdg.
void StopTrack()
 Stop the transport of the current particle and skip to the next
void StopEvent()
 Stop simulation of the current event and skip to the next
void StopRun()
 Stop simulation of the current event and set the abort run flag to true
void SetMaxStep(Double_t)
 Set the maximum step allowed till the particle is in the current medium
void SetMaxNStep(Int_t)
 Set the maximum number of steps till the particle is in the current medium
void SetUserDecay(Int_t pdg)
 Force the decays of particles to be done with Pythia
 and not with the Geant routines.
void ForceDecayTime(Float_t)
 Force the decay time of the current particle
Int_t CurrentVolID(Int_t& copyNo)
 Return the current volume ID and copy number
Int_t CurrentVolOffID(Int_t off, Int_t& copyNo)
 Return the current volume off upward in the geometrical tree
 ID and copy number
const char* CurrentVolName()
 Return the current volume name
const char* CurrentVolOffName(Int_t off)
 Return the current volume off upward in the geometrical tree
 name and copy number'
 if name=0 no name is returned
const char* CurrentVolPath()
 Return the path in geometry tree for the current volume
Int_t CurrentMaterial(Float_t &a, Float_t &z, Float_t &dens, Float_t &radl, Float_t &absl)
 Return the parameters of the current material during transport
Int_t CurrentMedium()
 Return the number of the current medium
Int_t CurrentEvent()
 Return the number of the current event
void Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
 Computes coordinates xd in daughter reference system
 from known coordinates xm in mother reference system.
 xm    coordinates in mother reference system (input)
 xd    coordinates in daughter reference system (output)
 iflag
 - IFLAG = 1  convert coordinates
 - IFLAG = 2  convert direction cosines
void Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
 The same as previous but in double precision
void Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
 Computes coordinates xm in mother reference system
 from known coordinates xd in daughter reference system.
 xd    coordinates in daughter reference system (input)
 xm    coordinates in mother reference system (output)
 iflag
 - IFLAG = 1  convert coordinates
 - IFLAG = 2  convert direction cosines
void Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
 The same as previous but in double precision
Double_t MaxStep()
 Return the maximum step length in the current medium
Int_t GetMaxNStep()
 Return the maximum number of steps allowed in the current medium
Int_t GetMedium()
 Return the number of the current medium
 Deprecated - replaced with CurrentMedium(), to be removed
void TrackPosition(TLorentzVector& position)
 Return the current position in the master reference frame of the
 track being transported
void TrackPosition(Double_t &x, Double_t &y, Double_t &z)
 Return the current position in the master reference frame of the
 track being transported
void TrackMomentum(TLorentzVector& momentum)
 Return the direction and the momentum (GeV/c) of the track
 currently being transported
void TrackMomentum(Double_t &px, Double_t &py, Double_t &pz, Double_t &etot)
 Return the direction and the momentum (GeV/c) of the track
 currently being transported
Double_t TrackStep()
 Return the length in centimeters of the current step (in cm)
Double_t TrackLength()
 Return the length of the current track from its origin (in cm)
Double_t TrackTime()
 Return the current time of flight of the track being transported
Double_t Edep()
 Return the energy lost in the current step
Int_t TrackPid()
 Return the PDG of the particle transported
Double_t TrackCharge()
 Return the charge of the track currently transported
Double_t TrackMass()
 Return the mass of the track currently transported
Double_t Etot()
 Return the total energy of the current track
Bool_t IsNewTrack()
 Return true when the track performs the first step
Bool_t IsTrackInside()
 Return true if the track is not at the boundary of the current volume
Bool_t IsTrackEntering()
 Return true if this is the first step of the track in the current volume
Bool_t IsTrackExiting()
 Return true if this is the last step of the track in the current volume
Bool_t IsTrackOut()
 Return true if the track is out of the setup
Bool_t IsTrackDisappeared()
 Return true if the current particle has disappeared
 either because it decayed or because it underwent
 an inelastic collision
Bool_t IsTrackStop()
 Return true if the track energy has fallen below the threshold
Bool_t IsTrackAlive()
 Return true if the current particle is alive and will continue to be
 transported
Int_t NSecondaries()
 Return the number of secondary particles generated in the current step
void GetSecondary(Int_t isec, Int_t& particleId, TLorentzVector& position, TLorentzVector& momentum)
 Return the parameters of the secondary track number isec produced
 in the current step
TMCProcess ProdProcess(Int_t isec)
 Return the VMC code of the process that has produced the secondary
 particles in the current step
Int_t StepProcesses(TArrayI &proc)
 Return the array of the VMC code of the processes active in the current
 step
Bool_t SecondariesAreOrdered()
 Return the information about the transport order needed by the stack
void Gdopt(const char*,const char*)
 Set/modify the drawing options.
 Deprecated - G3 only
void SetClipBox(const char*,Double_t=-9999,Double_t=0, Double_t=-9999, Double_t=0,Double_t=-9999,Double_t=0)
 This function allows subtractions (via boolean operation) of BOX shape
 from any part of the detector, therefore showing its inner contents
 Deprecated - G3 only
void DefaultRange()
 Deprecated - G3 only
void Gdhead(Int_t, const char*, Double_t=0)
 Deprecated - G3 only
void Gdman(Double_t, Double_t, const char*)
 Deprecated - G3 only
void Init()
 Initialize MC
void BuildPhysics()
 Initialize MC physics
void ProcessEvent()
 Process one event
Bool_t ProcessRun(Int_t nevent)
 Process one  run and return true if run has finished successfully,
 return false in other cases (run aborted by user)
void InitLego()
 Set switches for lego transport
TVirtualMCStack* GetStack()
 Return the particle stack
TVirtualMCDecayer* GetDecayer()
 Return the external decayer
TRandom* GetRandom()
 Return the random number generator
TVirtualMC & operator=(const TVirtualMC &)

Last update: root/mc:$Name: $:$Id: TVirtualMC.cxx,v 1.7 2006/05/14 07:38:51 brun Exp $
Copyright (c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.