library: libRooFit
#include "RooExtendPdf.h"

RooExtendPdf


class description - header file - source file - inheritance tree (.pdf)

class RooExtendPdf : public RooAbsPdf

Inheritance Chart:
TObject
<-
TNamed
RooPrintable
<-
RooAbsArg
<-
RooAbsReal
<-
RooAbsPdf
<-
RooExtendPdf

    public:
RooExtendPdf(const char* name, const char* title, const RooAbsPdf& pdf, const RooAbsReal& norm, const char* rangeName = "0") RooExtendPdf(const RooExtendPdf& other, const char* name = "0") virtual ~RooExtendPdf() virtual Double_t analyticalIntegralWN(Int_t code, const RooArgSet* normSet, const char* rangeName = "0") const static TClass* Class() virtual TObject* clone(const char* newname) const virtual Double_t evaluate() const virtual Double_t expectedEvents(const RooArgSet* nset) const virtual Double_t expectedEvents(const RooArgSet& nset) const virtual RooAbsPdf::ExtendMode extendMode() const virtual Bool_t forceAnalyticalInt(const RooAbsArg&) const virtual Int_t getAnalyticalIntegralWN(RooArgSet& allVars, RooArgSet& analVars, const RooArgSet* normSet, const char* rangeName = "0") const virtual TClass* IsA() const virtual Bool_t selfNormalized() const virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b)

Data Members


    protected:
RooRealProxy _pdf PDF used for fractional correction factor RooRealProxy _n Number of expected events const TNamed* _rangeName Name of subset range

Class Description

RooExtendPdf(const char *name, const char *title, const RooAbsPdf& pdf, const RooAbsReal& norm, const char* rangeName)
 Constructor. The ExtendedPdf behaves identical to the supplied input pdf,
 but adds an extended likelihood term. The expected number of events return
 is 'norm'. If a rangename is given, the number of events is interpreted as
 the number of events in the given range
RooExtendPdf(const RooExtendPdf& other, const char* name)
 Copy constructor
~RooExtendPdf()
 Destructor
Double_t expectedEvents(const RooArgSet* nset)
 Return the number of expected events, which is

 n / [ Int(xC,yF) pdf(x,y) / Int(xF,yF) pdf(x,y) ]

 Where x is the set of dependents with cuts defined
 and y are the other dependents. xC is the integration
 of x over the cut range, xF is the integration of
 x over the full range.
cout << " expectedEvents(" << GetName() << ")
 Optionally multiply with fractional normalization
TObject* clone(const char* newname)
Double_t evaluate()
Int_t getAnalyticalIntegralWN(RooArgSet& allVars, RooArgSet& analVars, const RooArgSet* normSet, const char* rangeName=0)
Double_t analyticalIntegralWN(Int_t code, const RooArgSet* normSet, const char* rangeName=0)
Bool_t selfNormalized()
ExtendMode extendMode()

Last update: Tue Jul 11 11:45:34 2006
Copyright (c) 2000-2005, Regents of the University of California *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.