Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.41 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0146 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 19.7976
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.940392 0.92156 0.111639 0.0112532 11953.8 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.692947 0.819837 0.110729 0.0108268 12011.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.598293 0.702763 0.110804 0.0101759 11925.1 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.526395 0.676737 0.107018 0.0105248 12436.1 0
: 5 | 0.451954 0.696547 0.10902 0.0107921 12216.5 1
: 6 | 0.408011 0.714719 0.118364 0.0132492 11416 2
: 7 Minimum Test error found - save the configuration
: 7 | 0.361469 0.676717 0.111658 0.0111075 11934.3 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.308236 0.641502 0.113481 0.0118025 11801.9 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.257716 0.631388 0.11365 0.0110589 11696.9 0
: 10 | 0.22969 0.690972 0.115857 0.0115836 11508.2 1
:
: Elapsed time for training with 1600 events: 1.14 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0595 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 298.576
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 3.39035 0.94413 0.849373 0.0789798 1557.65 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.03615 0.726434 0.809159 0.0671316 1617.19 0
: 3 | 0.788233 0.769854 0.824421 0.0702501 1591.15 1
: 4 | 0.727649 0.727958 0.813574 0.0737445 1621.99 2
: 5 | 0.725007 0.832066 0.843961 0.0799818 1570.72 3
: 6 Minimum Test error found - save the configuration
: 6 | 0.712583 0.648159 0.866365 0.0770567 1520.32 0
: 7 | 0.691077 0.654517 0.810064 0.068186 1617.52 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.715191 0.62826 0.792811 0.0690316 1657.96 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.640776 0.617056 0.789951 0.0677239 1661.53 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.614515 0.599181 0.794163 0.0704355 1658.08 0
:
: Elapsed time for training with 1600 events: 8.27 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.353 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.025e-02
: 2 : vars : 9.137e-03
: 3 : vars : 8.412e-03
: 4 : vars : 8.319e-03
: 5 : vars : 7.606e-03
: 6 : vars : 7.574e-03
: 7 : vars : 7.334e-03
: 8 : vars : 7.284e-03
: 9 : vars : 7.085e-03
: 10 : vars : 6.955e-03
: 11 : vars : 6.945e-03
: 12 : vars : 6.884e-03
: 13 : vars : 6.862e-03
: 14 : vars : 6.759e-03
: 15 : vars : 6.753e-03
: 16 : vars : 6.721e-03
: 17 : vars : 6.694e-03
: 18 : vars : 6.601e-03
: 19 : vars : 6.539e-03
: 20 : vars : 6.395e-03
: 21 : vars : 6.376e-03
: 22 : vars : 6.348e-03
: 23 : vars : 6.325e-03
: 24 : vars : 6.224e-03
: 25 : vars : 6.212e-03
: 26 : vars : 6.144e-03
: 27 : vars : 6.098e-03
: 28 : vars : 6.057e-03
: 29 : vars : 6.039e-03
: 30 : vars : 6.036e-03
: 31 : vars : 5.937e-03
: 32 : vars : 5.878e-03
: 33 : vars : 5.873e-03
: 34 : vars : 5.804e-03
: 35 : vars : 5.748e-03
: 36 : vars : 5.726e-03
: 37 : vars : 5.723e-03
: 38 : vars : 5.719e-03
: 39 : vars : 5.710e-03
: 40 : vars : 5.698e-03
: 41 : vars : 5.556e-03
: 42 : vars : 5.556e-03
: 43 : vars : 5.498e-03
: 44 : vars : 5.482e-03
: 45 : vars : 5.465e-03
: 46 : vars : 5.461e-03
: 47 : vars : 5.453e-03
: 48 : vars : 5.424e-03
: 49 : vars : 5.391e-03
: 50 : vars : 5.268e-03
: 51 : vars : 5.267e-03
: 52 : vars : 5.267e-03
: 53 : vars : 5.253e-03
: 54 : vars : 5.207e-03
: 55 : vars : 5.205e-03
: 56 : vars : 5.140e-03
: 57 : vars : 5.116e-03
: 58 : vars : 5.099e-03
: 59 : vars : 5.078e-03
: 60 : vars : 5.065e-03
: 61 : vars : 5.019e-03
: 62 : vars : 5.015e-03
: 63 : vars : 5.008e-03
: 64 : vars : 5.007e-03
: 65 : vars : 5.002e-03
: 66 : vars : 4.988e-03
: 67 : vars : 4.984e-03
: 68 : vars : 4.980e-03
: 69 : vars : 4.905e-03
: 70 : vars : 4.854e-03
: 71 : vars : 4.831e-03
: 72 : vars : 4.810e-03
: 73 : vars : 4.786e-03
: 74 : vars : 4.779e-03
: 75 : vars : 4.777e-03
: 76 : vars : 4.775e-03
: 77 : vars : 4.736e-03
: 78 : vars : 4.712e-03
: 79 : vars : 4.703e-03
: 80 : vars : 4.699e-03
: 81 : vars : 4.670e-03
: 82 : vars : 4.650e-03
: 83 : vars : 4.612e-03
: 84 : vars : 4.604e-03
: 85 : vars : 4.601e-03
: 86 : vars : 4.599e-03
: 87 : vars : 4.597e-03
: 88 : vars : 4.590e-03
: 89 : vars : 4.588e-03
: 90 : vars : 4.575e-03
: 91 : vars : 4.540e-03
: 92 : vars : 4.498e-03
: 93 : vars : 4.477e-03
: 94 : vars : 4.477e-03
: 95 : vars : 4.448e-03
: 96 : vars : 4.401e-03
: 97 : vars : 4.311e-03
: 98 : vars : 4.298e-03
: 99 : vars : 4.296e-03
: 100 : vars : 4.281e-03
: 101 : vars : 4.260e-03
: 102 : vars : 4.247e-03
: 103 : vars : 4.222e-03
: 104 : vars : 4.219e-03
: 105 : vars : 4.175e-03
: 106 : vars : 4.162e-03
: 107 : vars : 4.161e-03
: 108 : vars : 4.153e-03
: 109 : vars : 4.121e-03
: 110 : vars : 4.111e-03
: 111 : vars : 4.111e-03
: 112 : vars : 4.109e-03
: 113 : vars : 4.086e-03
: 114 : vars : 4.083e-03
: 115 : vars : 4.053e-03
: 116 : vars : 4.023e-03
: 117 : vars : 4.015e-03
: 118 : vars : 4.012e-03
: 119 : vars : 4.002e-03
: 120 : vars : 3.964e-03
: 121 : vars : 3.961e-03
: 122 : vars : 3.954e-03
: 123 : vars : 3.942e-03
: 124 : vars : 3.932e-03
: 125 : vars : 3.921e-03
: 126 : vars : 3.905e-03
: 127 : vars : 3.872e-03
: 128 : vars : 3.857e-03
: 129 : vars : 3.821e-03
: 130 : vars : 3.809e-03
: 131 : vars : 3.798e-03
: 132 : vars : 3.790e-03
: 133 : vars : 3.759e-03
: 134 : vars : 3.755e-03
: 135 : vars : 3.721e-03
: 136 : vars : 3.707e-03
: 137 : vars : 3.702e-03
: 138 : vars : 3.695e-03
: 139 : vars : 3.690e-03
: 140 : vars : 3.652e-03
: 141 : vars : 3.626e-03
: 142 : vars : 3.576e-03
: 143 : vars : 3.572e-03
: 144 : vars : 3.561e-03
: 145 : vars : 3.538e-03
: 146 : vars : 3.536e-03
: 147 : vars : 3.488e-03
: 148 : vars : 3.455e-03
: 149 : vars : 3.452e-03
: 150 : vars : 3.443e-03
: 151 : vars : 3.429e-03
: 152 : vars : 3.427e-03
: 153 : vars : 3.424e-03
: 154 : vars : 3.407e-03
: 155 : vars : 3.386e-03
: 156 : vars : 3.385e-03
: 157 : vars : 3.385e-03
: 158 : vars : 3.358e-03
: 159 : vars : 3.349e-03
: 160 : vars : 3.329e-03
: 161 : vars : 3.258e-03
: 162 : vars : 3.258e-03
: 163 : vars : 3.247e-03
: 164 : vars : 3.235e-03
: 165 : vars : 3.231e-03
: 166 : vars : 3.216e-03
: 167 : vars : 3.173e-03
: 168 : vars : 3.147e-03
: 169 : vars : 3.146e-03
: 170 : vars : 3.127e-03
: 171 : vars : 3.124e-03
: 172 : vars : 3.112e-03
: 173 : vars : 3.097e-03
: 174 : vars : 3.082e-03
: 175 : vars : 3.049e-03
: 176 : vars : 3.046e-03
: 177 : vars : 3.028e-03
: 178 : vars : 3.023e-03
: 179 : vars : 2.934e-03
: 180 : vars : 2.908e-03
: 181 : vars : 2.902e-03
: 182 : vars : 2.861e-03
: 183 : vars : 2.857e-03
: 184 : vars : 2.853e-03
: 185 : vars : 2.848e-03
: 186 : vars : 2.845e-03
: 187 : vars : 2.794e-03
: 188 : vars : 2.782e-03
: 189 : vars : 2.776e-03
: 190 : vars : 2.763e-03
: 191 : vars : 2.742e-03
: 192 : vars : 2.738e-03
: 193 : vars : 2.736e-03
: 194 : vars : 2.731e-03
: 195 : vars : 2.729e-03
: 196 : vars : 2.711e-03
: 197 : vars : 2.707e-03
: 198 : vars : 2.695e-03
: 199 : vars : 2.687e-03
: 200 : vars : 2.650e-03
: 201 : vars : 2.643e-03
: 202 : vars : 2.603e-03
: 203 : vars : 2.590e-03
: 204 : vars : 2.577e-03
: 205 : vars : 2.573e-03
: 206 : vars : 2.565e-03
: 207 : vars : 2.530e-03
: 208 : vars : 2.462e-03
: 209 : vars : 2.459e-03
: 210 : vars : 2.398e-03
: 211 : vars : 2.396e-03
: 212 : vars : 2.370e-03
: 213 : vars : 2.357e-03
: 214 : vars : 2.348e-03
: 215 : vars : 2.347e-03
: 216 : vars : 2.280e-03
: 217 : vars : 2.246e-03
: 218 : vars : 2.235e-03
: 219 : vars : 2.227e-03
: 220 : vars : 2.185e-03
: 221 : vars : 2.152e-03
: 222 : vars : 2.136e-03
: 223 : vars : 2.127e-03
: 224 : vars : 2.107e-03
: 225 : vars : 2.062e-03
: 226 : vars : 2.062e-03
: 227 : vars : 2.051e-03
: 228 : vars : 2.047e-03
: 229 : vars : 2.033e-03
: 230 : vars : 2.018e-03
: 231 : vars : 1.997e-03
: 232 : vars : 1.955e-03
: 233 : vars : 1.934e-03
: 234 : vars : 1.909e-03
: 235 : vars : 1.867e-03
: 236 : vars : 1.861e-03
: 237 : vars : 1.856e-03
: 238 : vars : 1.742e-03
: 239 : vars : 1.698e-03
: 240 : vars : 1.388e-03
: 241 : vars : 1.330e-03
: 242 : vars : 1.263e-03
: 243 : vars : 1.225e-03
: 244 : vars : 1.095e-03
: 245 : vars : 9.933e-04
: 246 : vars : 6.749e-04
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.7751
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.17274
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 10.0415
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.14761
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00439 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0217 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.127 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_DNN_CPU : 0.737
: dataset TMVA_CNN_CPU : 0.706
: dataset BDT : 0.702
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_DNN_CPU : 0.052 (0.195) 0.355 (0.650) 0.612 (0.858)
: dataset TMVA_CNN_CPU : 0.065 (0.085) 0.295 (0.350) 0.641 (0.712)
: dataset BDT : 0.045 (0.200) 0.311 (0.598) 0.605 (0.827)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m