Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.31 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0147 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 12.5832
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.857739 0.913102 0.104656 0.0104222 12734.2 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.68736 0.740531 0.103559 0.0101104 12841.2 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.590535 0.708866 0.104716 0.0101417 12688.4 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.541764 0.707513 0.105029 0.010129 12644.9 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.48159 0.690206 0.103718 0.0102281 12835.5 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.419403 0.65437 0.104193 0.00996128 12734.6 0
: 7 | 0.371089 0.696051 0.102904 0.00975246 12882.3 1
: 8 | 0.324873 0.677001 0.102221 0.0096526 12963.3 2
: 9 | 0.281368 0.669563 0.102384 0.00971518 12949.4 3
: 10 | 0.242212 0.665092 0.102779 0.00962585 12882 4
:
: Elapsed time for training with 1600 events: 1.06 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0513 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 80.9691
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.61317 1.1658 0.755935 0.0658878 1739.01 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.859213 0.812028 0.74952 0.0661193 1755.92 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.725781 0.698617 0.753345 0.0735299 1765.19 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.688938 0.686351 0.734958 0.0638017 1787.96 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.681113 0.675202 0.727109 0.0641889 1810.17 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.662614 0.661095 0.747433 0.0680102 1766.21 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.651082 0.656151 0.748857 0.0643969 1753.21 0
: 8 | 0.643958 0.668785 0.749724 0.063933 1749.8 1
: 9 Minimum Test error found - save the configuration
: 9 | 0.634579 0.639581 0.742207 0.0642677 1770.07 0
: 10 | 0.616784 0.653049 0.739682 0.0635352 1774.76 1
:
: Elapsed time for training with 1600 events: 7.52 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.333 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.885e-03
: 2 : vars : 9.045e-03
: 3 : vars : 8.602e-03
: 4 : vars : 8.539e-03
: 5 : vars : 8.429e-03
: 6 : vars : 8.315e-03
: 7 : vars : 7.542e-03
: 8 : vars : 7.532e-03
: 9 : vars : 7.448e-03
: 10 : vars : 7.422e-03
: 11 : vars : 7.395e-03
: 12 : vars : 7.369e-03
: 13 : vars : 7.348e-03
: 14 : vars : 7.206e-03
: 15 : vars : 7.129e-03
: 16 : vars : 7.104e-03
: 17 : vars : 7.056e-03
: 18 : vars : 7.023e-03
: 19 : vars : 6.985e-03
: 20 : vars : 6.846e-03
: 21 : vars : 6.825e-03
: 22 : vars : 6.720e-03
: 23 : vars : 6.703e-03
: 24 : vars : 6.467e-03
: 25 : vars : 6.431e-03
: 26 : vars : 6.364e-03
: 27 : vars : 6.342e-03
: 28 : vars : 6.260e-03
: 29 : vars : 6.241e-03
: 30 : vars : 6.152e-03
: 31 : vars : 6.136e-03
: 32 : vars : 6.088e-03
: 33 : vars : 6.059e-03
: 34 : vars : 6.041e-03
: 35 : vars : 6.028e-03
: 36 : vars : 6.010e-03
: 37 : vars : 5.997e-03
: 38 : vars : 5.933e-03
: 39 : vars : 5.932e-03
: 40 : vars : 5.877e-03
: 41 : vars : 5.861e-03
: 42 : vars : 5.799e-03
: 43 : vars : 5.722e-03
: 44 : vars : 5.697e-03
: 45 : vars : 5.681e-03
: 46 : vars : 5.677e-03
: 47 : vars : 5.660e-03
: 48 : vars : 5.653e-03
: 49 : vars : 5.588e-03
: 50 : vars : 5.574e-03
: 51 : vars : 5.550e-03
: 52 : vars : 5.519e-03
: 53 : vars : 5.491e-03
: 54 : vars : 5.490e-03
: 55 : vars : 5.483e-03
: 56 : vars : 5.479e-03
: 57 : vars : 5.459e-03
: 58 : vars : 5.454e-03
: 59 : vars : 5.447e-03
: 60 : vars : 5.433e-03
: 61 : vars : 5.425e-03
: 62 : vars : 5.410e-03
: 63 : vars : 5.344e-03
: 64 : vars : 5.343e-03
: 65 : vars : 5.342e-03
: 66 : vars : 5.287e-03
: 67 : vars : 5.256e-03
: 68 : vars : 5.243e-03
: 69 : vars : 5.215e-03
: 70 : vars : 5.164e-03
: 71 : vars : 5.145e-03
: 72 : vars : 5.141e-03
: 73 : vars : 5.133e-03
: 74 : vars : 5.122e-03
: 75 : vars : 5.122e-03
: 76 : vars : 5.108e-03
: 77 : vars : 5.054e-03
: 78 : vars : 5.011e-03
: 79 : vars : 5.005e-03
: 80 : vars : 4.968e-03
: 81 : vars : 4.943e-03
: 82 : vars : 4.935e-03
: 83 : vars : 4.900e-03
: 84 : vars : 4.893e-03
: 85 : vars : 4.862e-03
: 86 : vars : 4.841e-03
: 87 : vars : 4.783e-03
: 88 : vars : 4.756e-03
: 89 : vars : 4.718e-03
: 90 : vars : 4.716e-03
: 91 : vars : 4.711e-03
: 92 : vars : 4.672e-03
: 93 : vars : 4.671e-03
: 94 : vars : 4.664e-03
: 95 : vars : 4.659e-03
: 96 : vars : 4.583e-03
: 97 : vars : 4.583e-03
: 98 : vars : 4.558e-03
: 99 : vars : 4.520e-03
: 100 : vars : 4.491e-03
: 101 : vars : 4.450e-03
: 102 : vars : 4.447e-03
: 103 : vars : 4.420e-03
: 104 : vars : 4.396e-03
: 105 : vars : 4.352e-03
: 106 : vars : 4.340e-03
: 107 : vars : 4.334e-03
: 108 : vars : 4.320e-03
: 109 : vars : 4.315e-03
: 110 : vars : 4.303e-03
: 111 : vars : 4.299e-03
: 112 : vars : 4.280e-03
: 113 : vars : 4.229e-03
: 114 : vars : 4.204e-03
: 115 : vars : 4.190e-03
: 116 : vars : 4.098e-03
: 117 : vars : 4.088e-03
: 118 : vars : 4.060e-03
: 119 : vars : 4.047e-03
: 120 : vars : 4.006e-03
: 121 : vars : 3.968e-03
: 122 : vars : 3.956e-03
: 123 : vars : 3.941e-03
: 124 : vars : 3.941e-03
: 125 : vars : 3.931e-03
: 126 : vars : 3.930e-03
: 127 : vars : 3.900e-03
: 128 : vars : 3.846e-03
: 129 : vars : 3.846e-03
: 130 : vars : 3.833e-03
: 131 : vars : 3.802e-03
: 132 : vars : 3.797e-03
: 133 : vars : 3.790e-03
: 134 : vars : 3.782e-03
: 135 : vars : 3.775e-03
: 136 : vars : 3.711e-03
: 137 : vars : 3.703e-03
: 138 : vars : 3.696e-03
: 139 : vars : 3.689e-03
: 140 : vars : 3.688e-03
: 141 : vars : 3.658e-03
: 142 : vars : 3.638e-03
: 143 : vars : 3.607e-03
: 144 : vars : 3.544e-03
: 145 : vars : 3.536e-03
: 146 : vars : 3.526e-03
: 147 : vars : 3.517e-03
: 148 : vars : 3.495e-03
: 149 : vars : 3.480e-03
: 150 : vars : 3.461e-03
: 151 : vars : 3.429e-03
: 152 : vars : 3.423e-03
: 153 : vars : 3.394e-03
: 154 : vars : 3.375e-03
: 155 : vars : 3.365e-03
: 156 : vars : 3.357e-03
: 157 : vars : 3.341e-03
: 158 : vars : 3.338e-03
: 159 : vars : 3.336e-03
: 160 : vars : 3.335e-03
: 161 : vars : 3.334e-03
: 162 : vars : 3.325e-03
: 163 : vars : 3.322e-03
: 164 : vars : 3.320e-03
: 165 : vars : 3.316e-03
: 166 : vars : 3.306e-03
: 167 : vars : 3.303e-03
: 168 : vars : 3.272e-03
: 169 : vars : 3.271e-03
: 170 : vars : 3.235e-03
: 171 : vars : 3.231e-03
: 172 : vars : 3.221e-03
: 173 : vars : 3.219e-03
: 174 : vars : 3.121e-03
: 175 : vars : 3.099e-03
: 176 : vars : 3.075e-03
: 177 : vars : 3.009e-03
: 178 : vars : 2.973e-03
: 179 : vars : 2.954e-03
: 180 : vars : 2.945e-03
: 181 : vars : 2.915e-03
: 182 : vars : 2.894e-03
: 183 : vars : 2.809e-03
: 184 : vars : 2.806e-03
: 185 : vars : 2.801e-03
: 186 : vars : 2.778e-03
: 187 : vars : 2.757e-03
: 188 : vars : 2.713e-03
: 189 : vars : 2.689e-03
: 190 : vars : 2.641e-03
: 191 : vars : 2.617e-03
: 192 : vars : 2.606e-03
: 193 : vars : 2.604e-03
: 194 : vars : 2.594e-03
: 195 : vars : 2.580e-03
: 196 : vars : 2.576e-03
: 197 : vars : 2.506e-03
: 198 : vars : 2.495e-03
: 199 : vars : 2.482e-03
: 200 : vars : 2.477e-03
: 201 : vars : 2.406e-03
: 202 : vars : 2.348e-03
: 203 : vars : 2.286e-03
: 204 : vars : 2.261e-03
: 205 : vars : 2.261e-03
: 206 : vars : 2.246e-03
: 207 : vars : 2.234e-03
: 208 : vars : 2.231e-03
: 209 : vars : 2.191e-03
: 210 : vars : 2.132e-03
: 211 : vars : 2.126e-03
: 212 : vars : 2.095e-03
: 213 : vars : 2.051e-03
: 214 : vars : 2.034e-03
: 215 : vars : 2.022e-03
: 216 : vars : 1.958e-03
: 217 : vars : 1.938e-03
: 218 : vars : 1.932e-03
: 219 : vars : 1.929e-03
: 220 : vars : 1.914e-03
: 221 : vars : 1.880e-03
: 222 : vars : 1.859e-03
: 223 : vars : 1.833e-03
: 224 : vars : 1.782e-03
: 225 : vars : 1.777e-03
: 226 : vars : 1.739e-03
: 227 : vars : 1.736e-03
: 228 : vars : 1.733e-03
: 229 : vars : 1.342e-03
: 230 : vars : 1.307e-03
: 231 : vars : 1.266e-03
: 232 : vars : 1.163e-03
: 233 : vars : 1.099e-03
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.79793
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.1223
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.77723
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.31666
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00445 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0125 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.083 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.767
: dataset TMVA_DNN_CPU : 0.645
: dataset TMVA_CNN_CPU : 0.636
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.205 (0.425) 0.458 (0.728) 0.671 (0.878)
: dataset TMVA_DNN_CPU : 0.035 (0.115) 0.175 (0.505) 0.500 (0.766)
: dataset TMVA_CNN_CPU : 0.035 (0.078) 0.252 (0.288) 0.555 (0.578)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m