Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMVA_CNN_Classification.py File Reference

Detailed Description

View in nbviewer Open in SWAN
TMVA Classification Example Using a Convolutional Neural Network

This is an example of using a CNN in TMVA. We do classification using a toy image data set that is generated when running the example macro

Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.3 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.014 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 46.788
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.93301 0.867819 0.104052 0.0103591 12807.8 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.665676 0.769188 0.104653 0.0101927 12703.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.575015 0.742537 0.103915 0.0101528 12798.3 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.526256 0.709348 0.103231 0.0101332 12889.6 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.470655 0.688583 0.103221 0.0102648 12909.3 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.406039 0.671541 0.102979 0.0100608 12914.5 0
: 7 | 0.353975 0.683738 0.102771 0.00986651 12916.5 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.319648 0.645621 0.104751 0.0102952 12704.4 0
: 9 | 0.283726 0.658164 0.10304 0.00994213 12889.7 1
: 10 | 0.258535 0.660554 0.102745 0.00980256 12911.2 2
:
: Elapsed time for training with 1600 events: 1.06 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0511 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 46.4716
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.84563 0.917101 0.782089 0.0658641 1675.45 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.928739 0.730317 0.767285 0.0647394 1708.08 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.725656 0.685558 0.756799 0.0648516 1734.24 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.713193 0.667159 0.765116 0.0653231 1714.79 0
: 5 | 0.666883 0.834017 0.752781 0.0634565 1740.83 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.67937 0.607175 0.75277 0.0650959 1745.01 0
: 7 | 0.584238 0.61986 0.761006 0.0645751 1723.07 1
: 8 | 0.578983 0.714551 0.782894 0.0724937 1689.19 2
: 9 | 0.66341 0.730737 0.779864 0.0702637 1691.09 3
: 10 Minimum Test error found - save the configuration
: 10 | 0.601715 0.537266 0.791786 0.0721056 1667.41 0
:
: Elapsed time for training with 1600 events: 7.76 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.379 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.979e-03
: 2 : vars : 9.196e-03
: 3 : vars : 8.699e-03
: 4 : vars : 8.166e-03
: 5 : vars : 8.062e-03
: 6 : vars : 8.034e-03
: 7 : vars : 7.835e-03
: 8 : vars : 7.716e-03
: 9 : vars : 7.655e-03
: 10 : vars : 7.626e-03
: 11 : vars : 7.472e-03
: 12 : vars : 7.341e-03
: 13 : vars : 7.330e-03
: 14 : vars : 7.235e-03
: 15 : vars : 7.217e-03
: 16 : vars : 7.065e-03
: 17 : vars : 7.024e-03
: 18 : vars : 6.941e-03
: 19 : vars : 6.876e-03
: 20 : vars : 6.775e-03
: 21 : vars : 6.772e-03
: 22 : vars : 6.758e-03
: 23 : vars : 6.725e-03
: 24 : vars : 6.706e-03
: 25 : vars : 6.687e-03
: 26 : vars : 6.610e-03
: 27 : vars : 6.564e-03
: 28 : vars : 6.502e-03
: 29 : vars : 6.491e-03
: 30 : vars : 6.376e-03
: 31 : vars : 6.363e-03
: 32 : vars : 6.345e-03
: 33 : vars : 6.297e-03
: 34 : vars : 6.215e-03
: 35 : vars : 6.212e-03
: 36 : vars : 6.189e-03
: 37 : vars : 6.118e-03
: 38 : vars : 6.014e-03
: 39 : vars : 5.959e-03
: 40 : vars : 5.957e-03
: 41 : vars : 5.803e-03
: 42 : vars : 5.763e-03
: 43 : vars : 5.761e-03
: 44 : vars : 5.750e-03
: 45 : vars : 5.750e-03
: 46 : vars : 5.743e-03
: 47 : vars : 5.718e-03
: 48 : vars : 5.710e-03
: 49 : vars : 5.667e-03
: 50 : vars : 5.629e-03
: 51 : vars : 5.524e-03
: 52 : vars : 5.502e-03
: 53 : vars : 5.493e-03
: 54 : vars : 5.490e-03
: 55 : vars : 5.461e-03
: 56 : vars : 5.461e-03
: 57 : vars : 5.445e-03
: 58 : vars : 5.428e-03
: 59 : vars : 5.401e-03
: 60 : vars : 5.322e-03
: 61 : vars : 5.294e-03
: 62 : vars : 5.286e-03
: 63 : vars : 5.275e-03
: 64 : vars : 5.270e-03
: 65 : vars : 5.249e-03
: 66 : vars : 5.225e-03
: 67 : vars : 5.224e-03
: 68 : vars : 5.224e-03
: 69 : vars : 5.190e-03
: 70 : vars : 5.168e-03
: 71 : vars : 5.151e-03
: 72 : vars : 5.103e-03
: 73 : vars : 5.047e-03
: 74 : vars : 5.036e-03
: 75 : vars : 5.018e-03
: 76 : vars : 5.005e-03
: 77 : vars : 5.003e-03
: 78 : vars : 4.965e-03
: 79 : vars : 4.918e-03
: 80 : vars : 4.894e-03
: 81 : vars : 4.772e-03
: 82 : vars : 4.716e-03
: 83 : vars : 4.699e-03
: 84 : vars : 4.676e-03
: 85 : vars : 4.574e-03
: 86 : vars : 4.552e-03
: 87 : vars : 4.541e-03
: 88 : vars : 4.538e-03
: 89 : vars : 4.496e-03
: 90 : vars : 4.482e-03
: 91 : vars : 4.425e-03
: 92 : vars : 4.417e-03
: 93 : vars : 4.414e-03
: 94 : vars : 4.412e-03
: 95 : vars : 4.383e-03
: 96 : vars : 4.374e-03
: 97 : vars : 4.368e-03
: 98 : vars : 4.354e-03
: 99 : vars : 4.348e-03
: 100 : vars : 4.305e-03
: 101 : vars : 4.303e-03
: 102 : vars : 4.276e-03
: 103 : vars : 4.270e-03
: 104 : vars : 4.267e-03
: 105 : vars : 4.262e-03
: 106 : vars : 4.255e-03
: 107 : vars : 4.239e-03
: 108 : vars : 4.223e-03
: 109 : vars : 4.214e-03
: 110 : vars : 4.213e-03
: 111 : vars : 4.191e-03
: 112 : vars : 4.161e-03
: 113 : vars : 4.145e-03
: 114 : vars : 4.133e-03
: 115 : vars : 4.110e-03
: 116 : vars : 4.072e-03
: 117 : vars : 4.045e-03
: 118 : vars : 4.037e-03
: 119 : vars : 4.019e-03
: 120 : vars : 3.990e-03
: 121 : vars : 3.960e-03
: 122 : vars : 3.957e-03
: 123 : vars : 3.956e-03
: 124 : vars : 3.956e-03
: 125 : vars : 3.955e-03
: 126 : vars : 3.914e-03
: 127 : vars : 3.887e-03
: 128 : vars : 3.887e-03
: 129 : vars : 3.848e-03
: 130 : vars : 3.823e-03
: 131 : vars : 3.820e-03
: 132 : vars : 3.820e-03
: 133 : vars : 3.803e-03
: 134 : vars : 3.741e-03
: 135 : vars : 3.712e-03
: 136 : vars : 3.688e-03
: 137 : vars : 3.687e-03
: 138 : vars : 3.686e-03
: 139 : vars : 3.678e-03
: 140 : vars : 3.563e-03
: 141 : vars : 3.515e-03
: 142 : vars : 3.512e-03
: 143 : vars : 3.509e-03
: 144 : vars : 3.503e-03
: 145 : vars : 3.488e-03
: 146 : vars : 3.479e-03
: 147 : vars : 3.440e-03
: 148 : vars : 3.433e-03
: 149 : vars : 3.406e-03
: 150 : vars : 3.385e-03
: 151 : vars : 3.370e-03
: 152 : vars : 3.362e-03
: 153 : vars : 3.348e-03
: 154 : vars : 3.330e-03
: 155 : vars : 3.304e-03
: 156 : vars : 3.233e-03
: 157 : vars : 3.223e-03
: 158 : vars : 3.223e-03
: 159 : vars : 3.215e-03
: 160 : vars : 3.213e-03
: 161 : vars : 3.209e-03
: 162 : vars : 3.182e-03
: 163 : vars : 3.160e-03
: 164 : vars : 3.149e-03
: 165 : vars : 3.146e-03
: 166 : vars : 3.143e-03
: 167 : vars : 3.093e-03
: 168 : vars : 3.020e-03
: 169 : vars : 2.994e-03
: 170 : vars : 2.975e-03
: 171 : vars : 2.960e-03
: 172 : vars : 2.934e-03
: 173 : vars : 2.914e-03
: 174 : vars : 2.912e-03
: 175 : vars : 2.904e-03
: 176 : vars : 2.874e-03
: 177 : vars : 2.799e-03
: 178 : vars : 2.781e-03
: 179 : vars : 2.749e-03
: 180 : vars : 2.742e-03
: 181 : vars : 2.729e-03
: 182 : vars : 2.715e-03
: 183 : vars : 2.667e-03
: 184 : vars : 2.661e-03
: 185 : vars : 2.643e-03
: 186 : vars : 2.640e-03
: 187 : vars : 2.635e-03
: 188 : vars : 2.620e-03
: 189 : vars : 2.612e-03
: 190 : vars : 2.600e-03
: 191 : vars : 2.577e-03
: 192 : vars : 2.571e-03
: 193 : vars : 2.528e-03
: 194 : vars : 2.522e-03
: 195 : vars : 2.507e-03
: 196 : vars : 2.448e-03
: 197 : vars : 2.435e-03
: 198 : vars : 2.417e-03
: 199 : vars : 2.415e-03
: 200 : vars : 2.369e-03
: 201 : vars : 2.368e-03
: 202 : vars : 2.214e-03
: 203 : vars : 2.175e-03
: 204 : vars : 2.165e-03
: 205 : vars : 2.161e-03
: 206 : vars : 2.151e-03
: 207 : vars : 2.147e-03
: 208 : vars : 2.136e-03
: 209 : vars : 2.102e-03
: 210 : vars : 2.096e-03
: 211 : vars : 2.070e-03
: 212 : vars : 2.061e-03
: 213 : vars : 1.972e-03
: 214 : vars : 1.964e-03
: 215 : vars : 1.960e-03
: 216 : vars : 1.956e-03
: 217 : vars : 1.949e-03
: 218 : vars : 1.895e-03
: 219 : vars : 1.891e-03
: 220 : vars : 1.856e-03
: 221 : vars : 1.834e-03
: 222 : vars : 1.826e-03
: 223 : vars : 1.824e-03
: 224 : vars : 1.820e-03
: 225 : vars : 1.734e-03
: 226 : vars : 1.732e-03
: 227 : vars : 1.731e-03
: 228 : vars : 1.703e-03
: 229 : vars : 1.681e-03
: 230 : vars : 1.681e-03
: 231 : vars : 1.671e-03
: 232 : vars : 1.656e-03
: 233 : vars : 1.638e-03
: 234 : vars : 1.623e-03
: 235 : vars : 1.596e-03
: 236 : vars : 1.565e-03
: 237 : vars : 1.390e-03
: 238 : vars : 1.383e-03
: 239 : vars : 1.122e-03
: 240 : vars : 1.047e-03
: 241 : vars : 8.972e-04
: 242 : vars : 6.140e-04
: 243 : vars : 4.115e-04
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.79253
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.09709
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.98781
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.04374
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00356 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0126 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0926 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.765
: dataset BDT : 0.747
: dataset TMVA_DNN_CPU : 0.711
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.155 (0.265) 0.410 (0.533) 0.643 (0.824)
: dataset BDT : 0.065 (0.405) 0.408 (0.719) 0.658 (0.881)
: dataset TMVA_DNN_CPU : 0.065 (0.182) 0.250 (0.583) 0.609 (0.798)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
# TMVA Classification Example Using a Convolutional Neural Network
## Helper function to create input images data
## we create a signal and background 2D histograms from 2d gaussians
## with a location (means in X and Y) different for each event
## The difference between signal and background is in the gaussian width.
## The width for the background gaussian is slightly larger than the signal width by few % values
import ROOT
import os
opt = [1, 1, 1, 1, 1]
useTMVACNN = opt[0] if len(opt) > 0 else False
useKerasCNN = opt[1] if len(opt) > 1 else False
useTMVADNN = opt[2] if len(opt) > 2 else False
useTMVABDT = opt[3] if len(opt) > 3 else False
usePyTorchCNN = opt[4] if len(opt) > 4 else False
TMVA = ROOT.TMVA
TFile = ROOT.TFile
def MakeImagesTree(n, nh, nw):
# image size (nh x nw)
ntot = nh * nw
fileOutName = "images_data_16x16.root"
nRndmEvts = 10000 # number of events we use to fill each image
delta_sigma = 0.1 # 5% difference in the sigma
pixelNoise = 5
sX1 = 3
sY1 = 3
sX2 = sX1 + delta_sigma
sY2 = sY1 - delta_sigma
h1 = ROOT.TH2D("h1", "h1", nh, 0, 10, nw, 0, 10)
h2 = ROOT.TH2D("h2", "h2", nh, 0, 10, nw, 0, 10)
f1 = ROOT.TF2("f1", "xygaus")
f2 = ROOT.TF2("f2", "xygaus")
sgn = ROOT.TTree("sig_tree", "signal_tree")
bkg = ROOT.TTree("bkg_tree", "background_tree")
f = TFile(fileOutName, "RECREATE")
x1 = ROOT.std.vector["float"](ntot)
x2 = ROOT.std.vector["float"](ntot)
# create signal and background trees with a single branch
# an std::vector<float> of size nh x nw containing the image data
bkg.Branch("vars", "std::vector<float>", x1)
sgn.Branch("vars", "std::vector<float>", x2)
f1.SetParameters(1, 5, sX1, 5, sY1)
f2.SetParameters(1, 5, sX2, 5, sY2)
ROOT.Info("TMVA_CNN_Classification", "Filling ROOT tree \n")
for i in range(n):
if i % 1000 == 0:
print("Generating image event ...", i)
# generate random means in range [3,7] to be not too much on the border
h1.FillRandom(f1, nRndmEvts)
h2.FillRandom(f2, nRndmEvts)
for k in range(nh):
for l in range(nw):
m = k * nw + l
# add some noise in each bin
x1[m] = h1.GetBinContent(k + 1, l + 1) + ROOT.gRandom.Gaus(0, pixelNoise)
x2[m] = h2.GetBinContent(k + 1, l + 1) + ROOT.gRandom.Gaus(0, pixelNoise)
print("Signal and background tree with images data written to the file %s", f.GetName())
hasGPU = "tmva-gpu" in ROOT.gROOT.GetConfigFeatures()
hasCPU = "tmva-cpu" in ROOT.gROOT.GetConfigFeatures()
nevt = 1000 # use a larger value to get better results
if (not hasCPU and not hasGPU) :
ROOT.Warning("TMVA_CNN_Classificaton","ROOT is not supporting tmva-cpu and tmva-gpu skip using TMVA-DNN and TMVA-CNN")
useTMVACNN = False
useTMVADNN = False
if not "tmva-pymva" in ROOT.gROOT.GetConfigFeatures():
useKerasCNN = False
usePyTorchCNN = False
else:
if not useTMVACNN:
"TMVA_CNN_Classificaton",
"TMVA is not build with GPU or CPU multi-thread support. Cannot use TMVA Deep Learning for CNN",
)
writeOutputFile = True
num_threads = 4 # use max 4 threads
max_epochs = 10 # maximum number of epochs used for training
# do enable MT running
ROOT.EnableImplicitMT(num_threads)
ROOT.gSystem.Setenv("OMP_NUM_THREADS", "1") # switch OFF MT in OpenBLAS
print("Running with nthreads = {}".format(ROOT.GetThreadPoolSize()))
else:
print("Running in serial mode since ROOT does not support MT")
outputFile = None
if writeOutputFile:
outputFile = TFile.Open("TMVA_CNN_ClassificationOutput.root", "RECREATE")
## Create TMVA Factory
# Create the Factory class. Later you can choose the methods
# whose performance you'd like to investigate.
# The factory is the major TMVA object you have to interact with. Here is the list of parameters you need to pass
# - The first argument is the base of the name of all the output
# weight files in the directory weight/ that will be created with the
# method parameters
# - The second argument is the output file for the training results
# - The third argument is a string option defining some general configuration for the TMVA session.
# For example all TMVA output can be suppressed by removing the "!" (not) in front of the "Silent" argument in the
# option string
# - note that we disable any pre-transformation of the input variables and we avoid computing correlations between
# input variables
factory = TMVA.Factory(
"TMVA_CNN_Classification",
outputFile,
V=False,
ROC=True,
Silent=False,
Color=True,
AnalysisType="Classification",
Transformations=None,
Correlations=False,
)
## Declare DataLoader(s)
# The next step is to declare the DataLoader class that deals with input variables
# Define the input variables that shall be used for the MVA training
# note that you may also use variable expressions, which can be parsed by TTree::Draw( "expression" )]
# In this case the input data consists of an image of 16x16 pixels. Each single pixel is a branch in a ROOT TTree
loader = TMVA.DataLoader("dataset")
## Setup Dataset(s)
# Define input data file and signal and background trees
imgSize = 16 * 16
inputFileName = "images_data_16x16.root"
# if the input file does not exist create it
if ROOT.gSystem.AccessPathName(inputFileName):
MakeImagesTree(nevt, 16, 16)
inputFile = TFile.Open(inputFileName)
if inputFile is None:
ROOT.Warning("TMVA_CNN_Classification", "Error opening input file %s - exit", inputFileName.Data())
# inputFileName = "tmva_class_example.root"
# --- Register the training and test trees
signalTree = inputFile.Get("sig_tree")
backgroundTree = inputFile.Get("bkg_tree")
nEventsSig = signalTree.GetEntries()
# global event weights per tree (see below for setting event-wise weights)
signalWeight = 1.0
backgroundWeight = 1.0
# You can add an arbitrary number of signal or background trees
loader.AddSignalTree(signalTree, signalWeight)
loader.AddBackgroundTree(backgroundTree, backgroundWeight)
## add event variables (image)
## use new method (from ROOT 6.20 to add a variable array for all image data)
loader.AddVariablesArray("vars", imgSize)
# Set individual event weights (the variables must exist in the original TTree)
# for signal : factory->SetSignalWeightExpression ("weight1*weight2");
# for background: factory->SetBackgroundWeightExpression("weight1*weight2");
# loader->SetBackgroundWeightExpression( "weight" );
# Apply additional cuts on the signal and background samples (can be different)
mycuts = "" # for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
mycutb = "" # for example: TCut mycutb = "abs(var1)<0.5";
# Tell the factory how to use the training and testing events
# If no numbers of events are given, half of the events in the tree are used
# for training, and the other half for testing:
# loader.PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
# It is possible also to specify the number of training and testing events,
# note we disable the computation of the correlation matrix of the input variables
nTrainSig = 0.8 * nEventsSig
nTrainBkg = 0.8 * nEventsBkg
# build the string options for DataLoader::PrepareTrainingAndTestTree
mycuts,
mycutb,
nTrain_Signal=nTrainSig,
nTrain_Background=nTrainBkg,
SplitMode="Random",
SplitSeed=100,
NormMode="NumEvents",
V=False,
CalcCorrelations=False,
)
# DataSetInfo : [dataset] : Added class "Signal"
# : Add Tree sig_tree of type Signal with 10000 events
# DataSetInfo : [dataset] : Added class "Background"
# : Add Tree bkg_tree of type Background with 10000 events
# signalTree.Print();
# Booking Methods
# Here we book the TMVA methods. We book a Boosted Decision Tree method (BDT)
# Boosted Decision Trees
if useTMVABDT:
loader,
"BDT",
V=False,
NTrees=400,
MinNodeSize="2.5%",
MaxDepth=2,
BoostType="AdaBoost",
AdaBoostBeta=0.5,
UseBaggedBoost=True,
BaggedSampleFraction=0.5,
SeparationType="GiniIndex",
nCuts=20,
)
#### Booking Deep Neural Network
# Here we book the DNN of TMVA. See the example TMVA_Higgs_Classification.C for a detailed description of the
# options
if useTMVADNN:
layoutString = ROOT.TString(
"DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR"
)
# Training strategies
# one can catenate several training strings with different parameters (e.g. learning rates or regularizations
# parameters) The training string must be concatenated with the `|` delimiter
trainingString1 = ROOT.TString(
"LearningRate=1e-3,Momentum=0.9,Repetitions=1,"
"ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,"
"WeightDecay=1e-4,Regularization=None,"
"Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0."
) # + "|" + trainingString2 + ...
trainingString1 += ",MaxEpochs=" + str(max_epochs)
# Build now the full DNN Option string
dnnMethodName = "TMVA_DNN_CPU"
# use GPU if available
dnnOptions = "CPU"
if hasGPU :
dnnOptions = "GPU"
dnnMethodName = "TMVA_DNN_GPU"
loader,
dnnMethodName,
H=False,
V=True,
ErrorStrategy="CROSSENTROPY",
VarTransform=None,
WeightInitialization="XAVIER",
Layout=layoutString,
TrainingStrategy=trainingString1,
Architecture=dnnOptions
)
### Book Convolutional Neural Network in TMVA
# For building a CNN one needs to define
# - Input Layout : number of channels (in this case = 1) | image height | image width
# - Batch Layout : batch size | number of channels | image size = (height*width)
# Then one add Convolutional layers and MaxPool layers.
# - For Convolutional layer the option string has to be:
# - CONV | number of units | filter height | filter width | stride height | stride width | padding height | paddig
# width | activation function
# - note in this case we are using a filer 3x3 and padding=1 and stride=1 so we get the output dimension of the
# conv layer equal to the input
# - note we use after the first convolutional layer a batch normalization layer. This seems to help significantly the
# convergence
# - For the MaxPool layer:
# - MAXPOOL | pool height | pool width | stride height | stride width
# The RESHAPE layer is needed to flatten the output before the Dense layer
# Note that to run the CNN is required to have CPU or GPU support
if useTMVACNN:
# Training strategies.
trainingString1 = ROOT.TString(
"LearningRate=1e-3,Momentum=0.9,Repetitions=1,"
"ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,"
"WeightDecay=1e-4,Regularization=None,"
"Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0"
)
trainingString1 += ",MaxEpochs=" + str(max_epochs)
## New DL (CNN)
cnnMethodName = "TMVA_CNN_CPU"
cnnOptions = "CPU"
# use GPU if available
if hasGPU:
cnnOptions = "GPU"
cnnMethodName = "TMVA_CNN_GPU"
loader,
cnnMethodName,
H=False,
V=True,
ErrorStrategy="CROSSENTROPY",
VarTransform=None,
WeightInitialization="XAVIER",
InputLayout="1|16|16",
Layout="CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR",
TrainingStrategy=trainingString1,
Architecture=cnnOptions,
)
### Book Convolutional Neural Network in Keras using a generated model
if usePyTorchCNN:
ROOT.Info("TMVA_CNN_Classification", "Using Convolutional PyTorch Model")
pyTorchFileName = str(ROOT.gROOT.GetTutorialDir())
pyTorchFileName += "/machine_learning/PyTorch_Generate_CNN_Model.py"
# check that pytorch can be imported and file defining the model exists
torch_spec = importlib.util.find_spec("torch")
if torch_spec is not None and os.path.exists(pyTorchFileName):
#cmd = str(ROOT.TMVA.Python_Executable()) + " " + pyTorchFileName
#os.system(cmd)
#import PyTorch_Generate_CNN_Model
ROOT.Info("TMVA_CNN_Classification", "Booking PyTorch CNN model")
loader,
"PyTorch",
H=True,
V=False,
VarTransform=None,
FilenameModel="PyTorchModelCNN.pt",
FilenameTrainedModel="PyTorchTrainedModelCNN.pt",
NumEpochs=max_epochs,
BatchSize=100,
UserCode=str(pyTorchFileName)
)
else:
"TMVA_CNN_Classification",
"PyTorch is not installed or model building file is not existing - skip using PyTorch",
)
if useKerasCNN:
ROOT.Info("TMVA_CNN_Classification", "Building convolutional keras model")
# create python script which can be executed
# create 2 conv2d layer + maxpool + dense
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
# from keras.initializers import TruncatedNormal
# from keras import initializations
from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Reshape
# from keras.callbacks import ReduceLROnPlateau
model = Sequential()
model.add(Reshape((16, 16, 1), input_shape=(256,)))
model.add(Conv2D(10, kernel_size=(3, 3), kernel_initializer="TruncatedNormal", activation="relu", padding="same"))
model.add(Conv2D(10, kernel_size=(3, 3), kernel_initializer="TruncatedNormal", activation="relu", padding="same"))
# stride for maxpool is equal to pool size
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64, activation="tanh"))
# model.add(Dropout(0.2))
model.add(Dense(2, activation="sigmoid"))
model.compile(loss="binary_crossentropy", optimizer=Adam(learning_rate=0.001), weighted_metrics=["accuracy"])
model.save("model_cnn.h5")
if not os.path.exists("model_cnn.h5"):
raise FileNotFoundError("Error creating Keras model file - skip using Keras")
else:
# book PyKeras method only if Keras model could be created
ROOT.Info("TMVA_CNN_Classification", "Booking convolutional keras model")
loader,
"PyKeras",
H=True,
V=False,
VarTransform=None,
FilenameModel="model_cnn.h5",
FilenameTrainedModel="trained_model_cnn.h5",
NumEpochs=max_epochs,
BatchSize=100,
GpuOptions="allow_growth=True",
) # needed for RTX NVidia card and to avoid TF allocates all GPU memory
## Train Methods
## Test and Evaluate Methods
## Plot ROC Curve
c1 = factory.GetROCCurve(loader)
# close outputfile to save output file
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
Definition TFile.h:131
This is the main MVA steering class.
Definition Factory.h:80
Author
Harshal Shende

Definition in file TMVA_CNN_Classification.py.