Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.636 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00745 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 53.3708
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.888503 0.959263 0.103031 0.0101695 12922.5 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.685237 0.771965 0.10246 0.0100634 12987.5 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.588838 0.762392 0.102345 0.0100219 12997.9 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.514598 0.708197 0.101906 0.00991922 13045.4 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.440061 0.707373 0.10132 0.0100004 13140.7 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.411855 0.687004 0.102353 0.0101502 13014.8 0
: 7 | 0.3423 0.694887 0.102278 0.00978304 12973.6 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.297139 0.686293 0.102957 0.010106 12923.9 0
: 9 | 0.259031 0.70246 0.105778 0.0098879 12514.3 1
: 10 | 0.235979 0.764011 0.101622 0.00959977 13040.3 2
:
: Elapsed time for training with 1600 events: 1.05 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0511 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 5.85726
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.34088 0.874367 0.746563 0.0649618 1760.56 0
: 2 | 0.900712 0.908854 0.740592 0.0643652 1774.55 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.764605 0.72977 0.745375 0.0644905 1762.41 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.687522 0.710651 0.782114 0.0693786 1683.65 0
: 5 | 0.657362 0.724667 0.79344 0.0631755 1643.24 1
: 6 | 0.631452 0.711267 0.778485 0.0669276 1686.44 2
: 7 | 0.6106 0.711313 0.783783 0.0667687 1673.61 3
: 8 | 0.581491 0.711651 0.796106 0.0640946 1639.32 4
: 9 | 0.562221 0.721169 0.785064 0.0644829 1665.32 5
: 10 | 0.546036 0.714954 0.780045 0.0634077 1674.49 6
:
: Elapsed time for training with 1600 events: 7.8 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.341 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.165e-02
: 2 : vars : 1.067e-02
: 3 : vars : 1.025e-02
: 4 : vars : 1.001e-02
: 5 : vars : 9.969e-03
: 6 : vars : 9.740e-03
: 7 : vars : 9.521e-03
: 8 : vars : 9.088e-03
: 9 : vars : 8.871e-03
: 10 : vars : 8.711e-03
: 11 : vars : 8.550e-03
: 12 : vars : 8.450e-03
: 13 : vars : 8.377e-03
: 14 : vars : 8.376e-03
: 15 : vars : 8.246e-03
: 16 : vars : 8.214e-03
: 17 : vars : 8.114e-03
: 18 : vars : 8.094e-03
: 19 : vars : 7.958e-03
: 20 : vars : 7.942e-03
: 21 : vars : 7.933e-03
: 22 : vars : 7.931e-03
: 23 : vars : 7.736e-03
: 24 : vars : 7.567e-03
: 25 : vars : 7.562e-03
: 26 : vars : 7.429e-03
: 27 : vars : 7.400e-03
: 28 : vars : 7.388e-03
: 29 : vars : 7.271e-03
: 30 : vars : 7.209e-03
: 31 : vars : 7.165e-03
: 32 : vars : 7.101e-03
: 33 : vars : 6.906e-03
: 34 : vars : 6.837e-03
: 35 : vars : 6.814e-03
: 36 : vars : 6.741e-03
: 37 : vars : 6.688e-03
: 38 : vars : 6.621e-03
: 39 : vars : 6.596e-03
: 40 : vars : 6.525e-03
: 41 : vars : 6.458e-03
: 42 : vars : 6.392e-03
: 43 : vars : 6.359e-03
: 44 : vars : 6.282e-03
: 45 : vars : 6.195e-03
: 46 : vars : 6.162e-03
: 47 : vars : 6.151e-03
: 48 : vars : 6.127e-03
: 49 : vars : 6.098e-03
: 50 : vars : 6.023e-03
: 51 : vars : 6.013e-03
: 52 : vars : 5.986e-03
: 53 : vars : 5.928e-03
: 54 : vars : 5.925e-03
: 55 : vars : 5.916e-03
: 56 : vars : 5.817e-03
: 57 : vars : 5.801e-03
: 58 : vars : 5.799e-03
: 59 : vars : 5.779e-03
: 60 : vars : 5.730e-03
: 61 : vars : 5.714e-03
: 62 : vars : 5.669e-03
: 63 : vars : 5.656e-03
: 64 : vars : 5.653e-03
: 65 : vars : 5.627e-03
: 66 : vars : 5.586e-03
: 67 : vars : 5.581e-03
: 68 : vars : 5.534e-03
: 69 : vars : 5.509e-03
: 70 : vars : 5.463e-03
: 71 : vars : 5.452e-03
: 72 : vars : 5.402e-03
: 73 : vars : 5.377e-03
: 74 : vars : 5.372e-03
: 75 : vars : 5.339e-03
: 76 : vars : 5.314e-03
: 77 : vars : 5.310e-03
: 78 : vars : 5.295e-03
: 79 : vars : 5.275e-03
: 80 : vars : 5.239e-03
: 81 : vars : 5.229e-03
: 82 : vars : 5.211e-03
: 83 : vars : 5.201e-03
: 84 : vars : 5.201e-03
: 85 : vars : 5.174e-03
: 86 : vars : 5.133e-03
: 87 : vars : 5.066e-03
: 88 : vars : 5.057e-03
: 89 : vars : 5.055e-03
: 90 : vars : 5.047e-03
: 91 : vars : 4.916e-03
: 92 : vars : 4.909e-03
: 93 : vars : 4.888e-03
: 94 : vars : 4.862e-03
: 95 : vars : 4.854e-03
: 96 : vars : 4.834e-03
: 97 : vars : 4.809e-03
: 98 : vars : 4.742e-03
: 99 : vars : 4.729e-03
: 100 : vars : 4.718e-03
: 101 : vars : 4.703e-03
: 102 : vars : 4.636e-03
: 103 : vars : 4.635e-03
: 104 : vars : 4.622e-03
: 105 : vars : 4.611e-03
: 106 : vars : 4.588e-03
: 107 : vars : 4.573e-03
: 108 : vars : 4.549e-03
: 109 : vars : 4.536e-03
: 110 : vars : 4.494e-03
: 111 : vars : 4.485e-03
: 112 : vars : 4.464e-03
: 113 : vars : 4.430e-03
: 114 : vars : 4.401e-03
: 115 : vars : 4.396e-03
: 116 : vars : 4.354e-03
: 117 : vars : 4.324e-03
: 118 : vars : 4.319e-03
: 119 : vars : 4.255e-03
: 120 : vars : 4.250e-03
: 121 : vars : 4.248e-03
: 122 : vars : 4.248e-03
: 123 : vars : 4.247e-03
: 124 : vars : 4.219e-03
: 125 : vars : 4.175e-03
: 126 : vars : 4.130e-03
: 127 : vars : 4.128e-03
: 128 : vars : 4.127e-03
: 129 : vars : 4.071e-03
: 130 : vars : 4.042e-03
: 131 : vars : 4.041e-03
: 132 : vars : 3.959e-03
: 133 : vars : 3.941e-03
: 134 : vars : 3.920e-03
: 135 : vars : 3.909e-03
: 136 : vars : 3.896e-03
: 137 : vars : 3.895e-03
: 138 : vars : 3.888e-03
: 139 : vars : 3.881e-03
: 140 : vars : 3.866e-03
: 141 : vars : 3.862e-03
: 142 : vars : 3.851e-03
: 143 : vars : 3.810e-03
: 144 : vars : 3.804e-03
: 145 : vars : 3.666e-03
: 146 : vars : 3.652e-03
: 147 : vars : 3.589e-03
: 148 : vars : 3.536e-03
: 149 : vars : 3.534e-03
: 150 : vars : 3.477e-03
: 151 : vars : 3.410e-03
: 152 : vars : 3.398e-03
: 153 : vars : 3.359e-03
: 154 : vars : 3.358e-03
: 155 : vars : 3.326e-03
: 156 : vars : 3.314e-03
: 157 : vars : 3.307e-03
: 158 : vars : 3.281e-03
: 159 : vars : 3.243e-03
: 160 : vars : 3.229e-03
: 161 : vars : 3.213e-03
: 162 : vars : 3.182e-03
: 163 : vars : 3.164e-03
: 164 : vars : 3.139e-03
: 165 : vars : 3.070e-03
: 166 : vars : 3.067e-03
: 167 : vars : 3.058e-03
: 168 : vars : 3.040e-03
: 169 : vars : 3.035e-03
: 170 : vars : 3.027e-03
: 171 : vars : 3.021e-03
: 172 : vars : 3.020e-03
: 173 : vars : 2.998e-03
: 174 : vars : 2.922e-03
: 175 : vars : 2.911e-03
: 176 : vars : 2.897e-03
: 177 : vars : 2.860e-03
: 178 : vars : 2.857e-03
: 179 : vars : 2.805e-03
: 180 : vars : 2.742e-03
: 181 : vars : 2.724e-03
: 182 : vars : 2.719e-03
: 183 : vars : 2.625e-03
: 184 : vars : 2.425e-03
: 185 : vars : 2.367e-03
: 186 : vars : 2.366e-03
: 187 : vars : 2.352e-03
: 188 : vars : 2.239e-03
: 189 : vars : 2.132e-03
: 190 : vars : 2.118e-03
: 191 : vars : 2.102e-03
: 192 : vars : 2.087e-03
: 193 : vars : 2.057e-03
: 194 : vars : 2.033e-03
: 195 : vars : 1.839e-03
: 196 : vars : 1.823e-03
: 197 : vars : 1.788e-03
: 198 : vars : 1.722e-03
: 199 : vars : 1.705e-03
: 200 : vars : 1.650e-03
: 201 : vars : 1.419e-03
: 202 : vars : 1.051e-03
: 203 : vars : 0.000e+00
: 204 : vars : 0.000e+00
: 205 : vars : 0.000e+00
: 206 : vars : 0.000e+00
: 207 : vars : 0.000e+00
: 208 : vars : 0.000e+00
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.66354
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.44385
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.28288
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.51866
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00197 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.013 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0879 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.733
: dataset TMVA_DNN_CPU : 0.729
: dataset TMVA_CNN_CPU : 0.552
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.105 (0.245) 0.425 (0.605) 0.652 (0.793)
: dataset TMVA_DNN_CPU : 0.135 (0.225) 0.362 (0.600) 0.630 (0.814)
: dataset TMVA_CNN_CPU : 0.067 (0.042) 0.161 (0.189) 0.325 (0.377)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m