Likelihood and minimization: representing the parabolic approximation of the fit as a multi-variate Gaussian on the parameters of the fitted pdf 
 
  
import ROOT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1 = 
ROOT.TCanvas(
"rf608_fitresultaspdf_1", 
"rf608_fitresultaspdf_1", 600, 600)
 
 
 
c2 = 
ROOT.TCanvas(
"rf608_fitresultaspdf_2", 
"rf608_fitresultaspdf_2", 900, 600)
 
 
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
  [#0] WARNING:InputArguments -- The parameter 'sigma_g1' with range [-inf, inf] of the RooGaussian 'g1' exceeds the safe range of (0, inf). Advise to limit its range.
[#1] INFO:Fitting -- RooAbsPdf::fitTo(model) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using generic CPU library compiled with no vectorizations
[#1] INFO:Fitting -- Creation of NLL object took 8.33669 ms
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_model_modelData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
- Date
 - February 2018 
 
- Authors
 - Clemens Lange, Wouter Verkerke (C++ version) 
 
Definition in file rf608_fitresultaspdf.py.