Mean of numpy array: 1.0066466535473984
Standard deviation of numpy array: 0.9973499677811349
[#1] INFO:Fitting -- RooAbsPdf::fitTo(gauss_over_gauss_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using generic CPU library compiled with no vectorizations
[#1] INFO:Fitting -- Creation of NLL object took 10.2907 ms
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_gauss_over_gauss_Int[x]_) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
 
  RooFitResult: minimized FCN value: 14190.9, estimated distance to minimum: 2.51085e-09
                covariance matrix quality: Full, accurate covariance matrix
                Status : MINIMIZE=0 HESSE=0 
 
    Floating Parameter    FinalValue +/-  Error   
  --------------------  --------------------------
                  mean   -9.9464e-01 +/-  1.00e-02
                 sigma    1.0001e+00 +/-  7.07e-03
 
Counts and bin edges from RooDataHist.to_numpy:
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   1   2   0   4   4  11  25  47  54  72 121
 209 253 348 458 518 598 669 705 891 781 760 705 628 534 442 344 266 187
 142  89  55  42  16   9   6   0   2   1   1   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0]
[-10.   -9.8  -9.6  -9.4  -9.2  -9.   -8.8  -8.6  -8.4  -8.2  -8.   -7.8
  -7.6  -7.4  -7.2  -7.   -6.8  -6.6  -6.4  -6.2  -6.   -5.8  -5.6  -5.4
  -5.2  -5.   -4.8  -4.6  -4.4  -4.2  -4.   -3.8  -3.6  -3.4  -3.2  -3.
  -2.8  -2.6  -2.4  -2.2  -2.   -1.8  -1.6  -1.4  -1.2  -1.   -0.8  -0.6
  -0.4  -0.2   0.    0.2   0.4   0.6   0.8   1.    1.2   1.4   1.6   1.8
   2.    2.2   2.4   2.6   2.8   3.    3.2   3.4   3.6   3.8   4.    4.2
   4.4   4.6   4.8   5.    5.2   5.4   5.6   5.8   6.    6.2   6.4   6.6
   6.8   7.    7.2   7.4   7.6   7.8   8.    8.2   8.4   8.6   8.8   9.
   9.2   9.4   9.6   9.8  10. ]
Counts and bin edges from np.histogram:
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   1   2   0   4   4  11  25  47  54  72 121
 209 253 348 458 518 598 669 705 891 781 760 705 628 534 442 344 266 187
 142  89  55  42  16   9   6   0   2   1   1   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0]
[-10.   -9.8  -9.6  -9.4  -9.2  -9.   -8.8  -8.6  -8.4  -8.2  -8.   -7.8
  -7.6  -7.4  -7.2  -7.   -6.8  -6.6  -6.4  -6.2  -6.   -5.8  -5.6  -5.4
  -5.2  -5.   -4.8  -4.6  -4.4  -4.2  -4.   -3.8  -3.6  -3.4  -3.2  -3.
  -2.8  -2.6  -2.4  -2.2  -2.   -1.8  -1.6  -1.4  -1.2  -1.   -0.8  -0.6
  -0.4  -0.2   0.    0.2   0.4   0.6   0.8   1.    1.2   1.4   1.6   1.8
   2.    2.2   2.4   2.6   2.8   3.    3.2   3.4   3.6   3.8   4.    4.2
   4.4   4.6   4.8   5.    5.2   5.4   5.6   5.8   6.    6.2   6.4   6.6
   6.8   7.    7.2   7.4   7.6   7.8   8.    8.2   8.4   8.6   8.8   9.
   9.2   9.4   9.6   9.8  10. ]
RooDataHist imported with default binning and exported back to numpy:
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   1   2   0   4   4  11  25  47  54  72 121
 209 253 348 458 518 598 669 705 891 781 760 705 628 534 442 344 266 187
 142  89  55  42  16   9   6   0   2   1   1   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0   0]
[-10.   -9.8  -9.6  -9.4  -9.2  -9.   -8.8  -8.6  -8.4  -8.2  -8.   -7.8
  -7.6  -7.4  -7.2  -7.   -6.8  -6.6  -6.4  -6.2  -6.   -5.8  -5.6  -5.4
  -5.2  -5.   -4.8  -4.6  -4.4  -4.2  -4.   -3.8  -3.6  -3.4  -3.2  -3.
  -2.8  -2.6  -2.4  -2.2  -2.   -1.8  -1.6  -1.4  -1.2  -1.   -0.8  -0.6
  -0.4  -0.2   0.    0.2   0.4   0.6   0.8   1.    1.2   1.4   1.6   1.8
   2.    2.2   2.4   2.6   2.8   3.    3.2   3.4   3.6   3.8   4.    4.2
   4.4   4.6   4.8   5.    5.2   5.4   5.6   5.8   6.    6.2   6.4   6.6
   6.8   7.    7.2   7.4   7.6   7.8   8.    8.2   8.4   8.6   8.8   9.
   9.2   9.4   9.6   9.8  10. ]
RooDataHist imported with linspace binning and exported back to numpy:
[   0    0    0    0    0   11  209 1389 3381 3408 1381  211   10    0
    0    0    0    0    0    0]
[-10.  -9.  -8.  -7.  -6.  -5.  -4.  -3.  -2.  -1.   0.   1.   2.   3.
   4.   5.   6.   7.   8.   9.  10.]
RooDataHist imported with uniform binning and exported back to numpy:
[   0    0    0    0    0   11  209 1389 3381 3408 1381  211   10    0
    0    0    0    0    0    0]
[-10.  -9.  -8.  -7.  -6.  -5.  -4.  -3.  -2.  -1.   0.   1.   2.   3.
   4.   5.   6.   7.   8.   9.  10.]