Principal Components Analysis (PCA) example. 
Example of using TPrincipal as a stand alone class.
We create n-dimensional data points, where c = trunc(n / 5) + 1 are correlated with the rest n - c randomly distributed variables.
  
*************************************************
*         Principal Component Analysis          *
*                                               *
*  Number of variables:             10          *
*  Number of data points:            10000      *
*  Number of dependent variables:    3          *
*                                               *
*************************************************
 Variable #  | Mean Value |   Sigma    | Eigenvalue
-------------+------------+------------+------------
           0 |      5.008 |      1.005 |     0.3851 
           1 |      7.998 |      2.861 |     0.1107 
           2 |      1.967 |      1.956 |     0.1036 
           3 |      5.016 |      1.005 |     0.1015 
           4 |      8.009 |      2.839 |     0.1008 
           5 |      2.013 |      1.973 |    0.09962 
           6 |      4.992 |      1.014 |    0.09864 
           7 |         35 |      5.156 |  6.481e-16 
           8 |      30.01 |      5.049 |  2.202e-16 
           9 |         28 |      4.649 |  5.497e-16 
 
Writing on file "pca.C" ... done
   
 
void m=10000)
{
 
   cout << "*************************************************" << endl;
   cout << "*         Principal Component Analysis          *" << endl;
   cout << "*                                               *" << endl;
   cout << 
"*  Number of variables:           " << setw(4) << 
n 
       << "          *" << endl;
   cout << 
"*  Number of data points:         " << setw(8) << 
m 
       << "      *" << endl;
   cout << 
"*  Number of dependent variables: " << setw(4) << 
c 
       << "          *" << endl;
   cout << "*                                               *" << endl;
   cout << "*************************************************" << endl;
 
 
   
   
   
   
   n,"ND");
 
   
 
   
   
   
   for (
Int_t i = 0; i < 
m; i++) {
 
 
      
      
      }
 
      
      }
 
      
      data);
   }
 
   
 
   
   principal->MakePrincipals();
 
   
   principal->Print();
 
   
   principal->Test();
 
   
   principal->MakeHistograms();
 
   
   principal->MakeCode();
 
   
   
   principal);
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
Using a TBrowser one can browse all ROOT objects.
 
Principal Components Analysis (PCA)
 
This is the base class for the ROOT Random number generators.
 
- Authors
 - Rene Brun, Christian Holm Christensen 
 
Definition in file principal.C.