Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.38 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0147 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 80.9135
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.919542 0.92738 0.117547 0.013913 11579.2 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.654875 0.812233 0.117291 0.0113924 11331.6 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.569604 0.728289 0.114059 0.0109371 11636.7 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.502679 0.692204 0.104898 0.0103292 12689.1 0
: 5 | 0.423832 0.713926 0.104322 0.00985806 12703.2 1
: 6 | 0.374169 0.704449 0.130185 0.0191988 10812.2 2
: 7 | 0.315719 0.799703 0.110412 0.010173 11971.4 3
: 8 Minimum Test error found - save the configuration
: 8 | 0.266357 0.683874 0.106179 0.0107785 12578.5 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.231915 0.673242 0.114635 0.0132931 11841.1 0
: 10 | 0.208866 0.781003 0.111887 0.0118062 11990.3 1
:
: Elapsed time for training with 1600 events: 1.15 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0615 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 26.9623
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.974 0.945337 0.870723 0.0786444 1515 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.787082 0.763787 0.853812 0.0745123 1539.84 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.713017 0.692669 0.81356 0.0694077 1612.57 0
: 4 | 0.692806 0.698077 0.795304 0.0684356 1650.92 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.697463 0.67931 0.835975 0.0711254 1568.94 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.662828 0.671582 0.837191 0.0779462 1580.52 0
: 7 | 0.651069 0.671847 0.811467 0.0690799 1616.41 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.637287 0.64016 0.827412 0.0689247 1582.1 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.617332 0.622455 0.848809 0.0762908 1553.36 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.604706 0.609837 0.898529 0.0772053 1461.06 0
:
: Elapsed time for training with 1600 events: 8.47 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.367 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.618e-03
: 2 : vars : 8.476e-03
: 3 : vars : 8.196e-03
: 4 : vars : 8.151e-03
: 5 : vars : 7.859e-03
: 6 : vars : 7.841e-03
: 7 : vars : 7.792e-03
: 8 : vars : 7.618e-03
: 9 : vars : 7.556e-03
: 10 : vars : 7.300e-03
: 11 : vars : 7.278e-03
: 12 : vars : 7.168e-03
: 13 : vars : 7.080e-03
: 14 : vars : 7.049e-03
: 15 : vars : 6.943e-03
: 16 : vars : 6.933e-03
: 17 : vars : 6.898e-03
: 18 : vars : 6.875e-03
: 19 : vars : 6.870e-03
: 20 : vars : 6.775e-03
: 21 : vars : 6.730e-03
: 22 : vars : 6.703e-03
: 23 : vars : 6.587e-03
: 24 : vars : 6.477e-03
: 25 : vars : 6.476e-03
: 26 : vars : 6.466e-03
: 27 : vars : 6.450e-03
: 28 : vars : 6.377e-03
: 29 : vars : 6.310e-03
: 30 : vars : 6.305e-03
: 31 : vars : 6.268e-03
: 32 : vars : 6.205e-03
: 33 : vars : 6.202e-03
: 34 : vars : 6.196e-03
: 35 : vars : 6.158e-03
: 36 : vars : 6.130e-03
: 37 : vars : 6.058e-03
: 38 : vars : 6.052e-03
: 39 : vars : 6.009e-03
: 40 : vars : 5.926e-03
: 41 : vars : 5.774e-03
: 42 : vars : 5.771e-03
: 43 : vars : 5.768e-03
: 44 : vars : 5.611e-03
: 45 : vars : 5.562e-03
: 46 : vars : 5.562e-03
: 47 : vars : 5.550e-03
: 48 : vars : 5.550e-03
: 49 : vars : 5.545e-03
: 50 : vars : 5.534e-03
: 51 : vars : 5.517e-03
: 52 : vars : 5.387e-03
: 53 : vars : 5.384e-03
: 54 : vars : 5.374e-03
: 55 : vars : 5.300e-03
: 56 : vars : 5.268e-03
: 57 : vars : 5.266e-03
: 58 : vars : 5.208e-03
: 59 : vars : 5.202e-03
: 60 : vars : 5.200e-03
: 61 : vars : 5.199e-03
: 62 : vars : 5.196e-03
: 63 : vars : 5.178e-03
: 64 : vars : 5.158e-03
: 65 : vars : 5.147e-03
: 66 : vars : 5.129e-03
: 67 : vars : 5.124e-03
: 68 : vars : 5.096e-03
: 69 : vars : 5.055e-03
: 70 : vars : 5.048e-03
: 71 : vars : 4.988e-03
: 72 : vars : 4.966e-03
: 73 : vars : 4.884e-03
: 74 : vars : 4.855e-03
: 75 : vars : 4.822e-03
: 76 : vars : 4.812e-03
: 77 : vars : 4.756e-03
: 78 : vars : 4.749e-03
: 79 : vars : 4.718e-03
: 80 : vars : 4.703e-03
: 81 : vars : 4.700e-03
: 82 : vars : 4.676e-03
: 83 : vars : 4.635e-03
: 84 : vars : 4.625e-03
: 85 : vars : 4.618e-03
: 86 : vars : 4.599e-03
: 87 : vars : 4.586e-03
: 88 : vars : 4.558e-03
: 89 : vars : 4.553e-03
: 90 : vars : 4.551e-03
: 91 : vars : 4.540e-03
: 92 : vars : 4.519e-03
: 93 : vars : 4.510e-03
: 94 : vars : 4.507e-03
: 95 : vars : 4.489e-03
: 96 : vars : 4.465e-03
: 97 : vars : 4.463e-03
: 98 : vars : 4.448e-03
: 99 : vars : 4.433e-03
: 100 : vars : 4.410e-03
: 101 : vars : 4.388e-03
: 102 : vars : 4.378e-03
: 103 : vars : 4.356e-03
: 104 : vars : 4.340e-03
: 105 : vars : 4.339e-03
: 106 : vars : 4.331e-03
: 107 : vars : 4.325e-03
: 108 : vars : 4.310e-03
: 109 : vars : 4.300e-03
: 110 : vars : 4.299e-03
: 111 : vars : 4.296e-03
: 112 : vars : 4.292e-03
: 113 : vars : 4.261e-03
: 114 : vars : 4.220e-03
: 115 : vars : 4.217e-03
: 116 : vars : 4.166e-03
: 117 : vars : 4.129e-03
: 118 : vars : 4.088e-03
: 119 : vars : 4.082e-03
: 120 : vars : 4.068e-03
: 121 : vars : 4.057e-03
: 122 : vars : 4.054e-03
: 123 : vars : 4.026e-03
: 124 : vars : 3.999e-03
: 125 : vars : 3.974e-03
: 126 : vars : 3.970e-03
: 127 : vars : 3.950e-03
: 128 : vars : 3.939e-03
: 129 : vars : 3.847e-03
: 130 : vars : 3.815e-03
: 131 : vars : 3.803e-03
: 132 : vars : 3.796e-03
: 133 : vars : 3.789e-03
: 134 : vars : 3.757e-03
: 135 : vars : 3.734e-03
: 136 : vars : 3.707e-03
: 137 : vars : 3.654e-03
: 138 : vars : 3.646e-03
: 139 : vars : 3.627e-03
: 140 : vars : 3.616e-03
: 141 : vars : 3.614e-03
: 142 : vars : 3.605e-03
: 143 : vars : 3.564e-03
: 144 : vars : 3.561e-03
: 145 : vars : 3.525e-03
: 146 : vars : 3.501e-03
: 147 : vars : 3.500e-03
: 148 : vars : 3.488e-03
: 149 : vars : 3.470e-03
: 150 : vars : 3.446e-03
: 151 : vars : 3.358e-03
: 152 : vars : 3.355e-03
: 153 : vars : 3.320e-03
: 154 : vars : 3.316e-03
: 155 : vars : 3.305e-03
: 156 : vars : 3.290e-03
: 157 : vars : 3.290e-03
: 158 : vars : 3.285e-03
: 159 : vars : 3.247e-03
: 160 : vars : 3.243e-03
: 161 : vars : 3.234e-03
: 162 : vars : 3.226e-03
: 163 : vars : 3.196e-03
: 164 : vars : 3.189e-03
: 165 : vars : 3.179e-03
: 166 : vars : 3.159e-03
: 167 : vars : 3.125e-03
: 168 : vars : 3.120e-03
: 169 : vars : 3.114e-03
: 170 : vars : 3.076e-03
: 171 : vars : 3.070e-03
: 172 : vars : 3.057e-03
: 173 : vars : 3.052e-03
: 174 : vars : 3.037e-03
: 175 : vars : 3.028e-03
: 176 : vars : 3.020e-03
: 177 : vars : 3.018e-03
: 178 : vars : 2.988e-03
: 179 : vars : 2.980e-03
: 180 : vars : 2.963e-03
: 181 : vars : 2.962e-03
: 182 : vars : 2.940e-03
: 183 : vars : 2.905e-03
: 184 : vars : 2.871e-03
: 185 : vars : 2.848e-03
: 186 : vars : 2.775e-03
: 187 : vars : 2.762e-03
: 188 : vars : 2.724e-03
: 189 : vars : 2.722e-03
: 190 : vars : 2.720e-03
: 191 : vars : 2.717e-03
: 192 : vars : 2.682e-03
: 193 : vars : 2.668e-03
: 194 : vars : 2.645e-03
: 195 : vars : 2.598e-03
: 196 : vars : 2.592e-03
: 197 : vars : 2.583e-03
: 198 : vars : 2.569e-03
: 199 : vars : 2.550e-03
: 200 : vars : 2.514e-03
: 201 : vars : 2.506e-03
: 202 : vars : 2.496e-03
: 203 : vars : 2.494e-03
: 204 : vars : 2.480e-03
: 205 : vars : 2.472e-03
: 206 : vars : 2.430e-03
: 207 : vars : 2.380e-03
: 208 : vars : 2.377e-03
: 209 : vars : 2.343e-03
: 210 : vars : 2.294e-03
: 211 : vars : 2.273e-03
: 212 : vars : 2.254e-03
: 213 : vars : 2.214e-03
: 214 : vars : 2.176e-03
: 215 : vars : 2.139e-03
: 216 : vars : 2.074e-03
: 217 : vars : 2.062e-03
: 218 : vars : 2.046e-03
: 219 : vars : 2.028e-03
: 220 : vars : 2.026e-03
: 221 : vars : 1.979e-03
: 222 : vars : 1.946e-03
: 223 : vars : 1.939e-03
: 224 : vars : 1.933e-03
: 225 : vars : 1.901e-03
: 226 : vars : 1.897e-03
: 227 : vars : 1.839e-03
: 228 : vars : 1.719e-03
: 229 : vars : 1.703e-03
: 230 : vars : 1.675e-03
: 231 : vars : 1.671e-03
: 232 : vars : 1.572e-03
: 233 : vars : 1.570e-03
: 234 : vars : 1.451e-03
: 235 : vars : 1.267e-03
: 236 : vars : 1.178e-03
: 237 : vars : 1.148e-03
: 238 : vars : 1.095e-03
: 239 : vars : 7.912e-04
: 240 : vars : 5.616e-04
: 241 : vars : 5.582e-04
: 242 : vars : 5.441e-04
: 243 : vars : 3.983e-04
: 244 : vars : 2.779e-04
: 245 : vars : 2.466e-04
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.46756
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.5163
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.03759
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.99506
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00388 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0138 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.108 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.739
: dataset TMVA_DNN_CPU : 0.706
: dataset TMVA_CNN_CPU : 0.676
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.100 (0.295) 0.345 (0.695) 0.628 (0.860)
: dataset TMVA_DNN_CPU : 0.045 (0.175) 0.205 (0.675) 0.595 (0.827)
: dataset TMVA_CNN_CPU : 0.025 (0.115) 0.292 (0.413) 0.578 (0.647)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m