#include <cstdlib>
#include <vector>
#include <iostream>
#include <map>
#include <string>
 
 
 
 
{
   
   
 
   
   std::map<std::string,int> Use;
 
   
   Use["PDERS"]           = 0;
   Use["PDEFoam"]         = 1;
   Use["KNN"]             = 1;
   
   
   Use["LD"]              = 1;
   
   
   Use["FDA_GA"]          = 0;
   Use["FDA_MC"]          = 0;
   Use["FDA_MT"]          = 0;
   Use["FDA_GAMT"]        = 0;
   
   
   Use["MLP"] = 0;
   
#ifdef R__HAS_TMVAGPU
   Use["DNN_GPU"] = 1;
   Use["DNN_CPU"] = 0;
#else
   Use["DNN_GPU"] = 0;
#ifdef R__HAS_TMVACPU
   Use["DNN_CPU"] = 1;
#else
   Use["DNN_CPU"] = 0;
#endif
#endif
   
   
   Use["SVM"]             = 0;
   
   
   Use["BDT"]             = 0;
   Use["BDTG"]            = 1;
   
 
   std::cout << std::endl;
   std::cout << "==> Start TMVARegressionApplication" << std::endl;
 
   
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
 
 
            std::cout << 
"Method \"" << 
regMethod << 
"\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
            std::cout << std::endl;
            return;
         }
      }
   }
 
   
 
   
 
 
   
   
 
   
 
   
 
   TString dir    = 
"datasetreg/weights/";
 
 
   
   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      if (it->second) {
         TString methodName = it->first + 
" method";
 
      }
   }
 
   
   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      TH1* 
h = 
new TH1F( it->first.c_str(), 
TString(it->first) + 
" method", 100, -100, 600 );
 
   }
 
   
   
   
   
   TString fname =  
gROOT->GetTutorialDir() + 
"/machine_learning/data/tmva_reg_example.root";
 
   }
      std::cout << "ERROR: could not open data file" << std::endl;
   }
   std::cout << 
"--- TMVARegressionApp        : Using input file: " << 
input->GetName() << std::endl;
 
   
 
   
   
   
   
   
   std::cout << "--- Select signal sample" << std::endl;
 
   std::cout << 
"--- Processing: " << 
theTree->GetEntries() << 
" events" << std::endl;
 
         std::cout << 
"--- ... Processing event: " << 
ievt << std::endl;
      }
 
 
      
      
 
      }
   }
   std::cout << 
"--- End of event loop: "; 
sw.Print();
 
   
 
 
   std::cout << 
"--- Created root file: \"" << 
target->GetName()
             << "\" containing the MVA output histograms" << std::endl;
 
 
   std::cout << "==> TMVARegressionApplication is done!" << std::endl << std::endl;
}
 
{
   
   for (
int i=1; i<
argc; i++) {
 
   }
   return 0;
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
R__EXTERN TSystem * gSystem
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
1-D histogram with a float per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
The Reader class serves to use the MVAs in a specific analysis context.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
A TTree represents a columnar dataset.
create variable transformations
 
 
==> Start TMVARegressionApplication
                         : Booking "BDTG method" of type "BDT" from datasetreg/weights/TMVARegression_BDTG.weights.xml.
                         : Reading weight file: datasetreg/weights/TMVARegression_BDTG.weights.xml
<HEADER> DataSetInfo              : [Default] : Added class "Regression"
                         : Booked classifier "BDTG" of type: "BDT"
                         : Booking "DNN_CPU method" of type "DL" from datasetreg/weights/TMVARegression_DNN_CPU.weights.xml.
                         : Reading weight file: datasetreg/weights/TMVARegression_DNN_CPU.weights.xml
                         : Booked classifier "DNN_CPU" of type: "DL"
                         : Booking "KNN method" of type "KNN" from datasetreg/weights/TMVARegression_KNN.weights.xml.
                         : Reading weight file: datasetreg/weights/TMVARegression_KNN.weights.xml
                         : Creating kd-tree with 1000 events
                         : Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
<HEADER> ModulekNN                : Optimizing tree for 2 variables with 1000 values
                         : <Fill> Class 1 has     1000 events
                         : Booked classifier "KNN" of type: "KNN"
                         : Booking "LD method" of type "LD" from datasetreg/weights/TMVARegression_LD.weights.xml.
                         : Reading weight file: datasetreg/weights/TMVARegression_LD.weights.xml
                         : Booked classifier "LD" of type: "LD"
                         : Booking "PDEFoam method" of type "PDEFoam" from datasetreg/weights/TMVARegression_PDEFoam.weights.xml.
                         : Reading weight file: datasetreg/weights/TMVARegression_PDEFoam.weights.xml
                         : Read foams from file: datasetreg/weights/TMVARegression_PDEFoam.weights_foams.root
                         : Booked classifier "PDEFoam" of type: "PDEFoam"
--- TMVARegressionApp        : Using input file: /github/home/ROOT-CI/build/tutorials/machine_learning/data/tmva_reg_example.root
--- Select signal sample
                         : Rebuilding Dataset Default
--- End of event loop: Real time 0:00:01, CP time 1.570
--- Created root file: "TMVARegApp.root" containing the MVA output histograms
==> TMVARegressionApplication is done!