 
  
 
 This executable gives an example of a very simple use of the genetic algorithm of TMVA. 
- Project : TMVA - a Root-integrated toolkit for multivariate data analysis
- Package : TMVA
- Executable: TMVAGAexample
 
 
#include <iostream> 
#include <vector>
 
 
using std::vector, std::cout, std::endl;
 
 
 
    public:
       }
 
       
       
       
       
       
       
       
       
       
       
       
       Double_t EstimatorFunction( std::vector<Double_t> & factors ){
 
           
           return (10.- factors.at(0) *factors.at(1) + factors.at(2));
 
           
       }
};
 
 
 
 
 
 
 
 
        std::cout << "\nEXAMPLE" << std::endl;
        
        
        ranges.push_back( new Interval(0,15,30) );
        ranges.push_back( new Interval(0,13) );
        ranges.push_back( new Interval(0,5,3) );
 
        for( std::vector<Interval*>::iterator it = ranges.
begin(); it != ranges.
end(); it++ ){
 
           std::cout << " range: " << (*it)->GetMin() << "   " << (*it)->GetMax() << std::endl;
        }
 
 
        
        
        
        
        
 
 
       
 
 
         for( std::vector<Double_t>::iterator it = 
result.begin(); it<
result.end(); it++ ){
 
             std::cout << 
"FACTOR " << 
n << 
" : " << (*it) << std::endl;
         }
 
}
 
 
 
} 
 
   cout << "Start Test TMVAGAexample" << endl
        << "========================" << endl
        << endl;
 
   TMVA::exampleGA();
 
}
 
 
{
   return 0;
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
const_iterator begin() const
const_iterator end() const
create variable transformations
 
Start Test TMVAGAexample
========================
 
 
EXAMPLE
 range: 0   15
 range: 0   13
 range: 0   5
FitterBase               : <GeneticFitter> Optimisation, please be patient ... (inaccurate progress timing for GA)
                         : Elapsed time: 0.00854 sec                            
FACTOR 0 : 15
FACTOR 1 : 13
FACTOR 2 : 0
- Author
- Andreas Hoecker 
Definition in file TMVAGAexample2.C.