As input data is used a toy-MC sample consisting of four Gaussian-distributed and linearly correlated input variables with category (eta) dependent properties.
For this example, only Fisher and Likelihood are used. Run via: 
 The output file "TMVACC.root" can be analysed with the use of dedicated macros (simply say: root -l <macro.C>), which can be conveniently invoked through a GUI that will appear at the end of the run of this macro.
 
 
==> Start TMVAClassificationCategory
--- TMVAClassificationCategory: Accessing /github/home/ROOT-CI/src/tutorials/machine_learning/data/toy_sigbkg_categ_offset.root
<HEADER> DataSetInfo              : [dataset] : Added class "Signal"
                         : Add Tree TreeS of type Signal with 10000 events
<HEADER> DataSetInfo              : [dataset] : Added class "Background"
                         : Add Tree TreeB of type Background with 10000 events
<HEADER> Factory                  : Booking method: Fisher
                         : 
<HEADER> Factory                  : Booking method: Likelihood
                         : 
<HEADER> Factory                  : Booking method: FisherCat
                         : 
                         : Adding sub-classifier: Fisher::Category_Fisher_1
<HEADER> DataSetInfo              : [Category_Fisher_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Fisher_1_dsi] : Added class "Background"
                         : Adding sub-classifier: Fisher::Category_Fisher_2
<HEADER> DataSetInfo              : [Category_Fisher_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Fisher_2_dsi] : Added class "Background"
<HEADER> Factory                  : Booking method: LikelihoodCat
                         : 
                         : Adding sub-classifier: Likelihood::Category_Likelihood_1
<HEADER> DataSetInfo              : [Category_Likelihood_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Likelihood_1_dsi] : Added class "Background"
                         : Adding sub-classifier: Likelihood::Category_Likelihood_2
<HEADER> DataSetInfo              : [Category_Likelihood_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Likelihood_2_dsi] : Added class "Background"
<HEADER> Factory                  : Train all methods
                         : Rebuilding Dataset dataset
                         : Building event vectors for type 2 Signal
                         : Dataset[dataset] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[dataset] :  create input formulas for tree TreeB
<HEADER> DataSetFactory           : [dataset] : Number of events in input trees
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 5000
                         : Signal     -- testing events             : 5000
                         : Signal     -- training and testing events: 10000
                         : Background -- training events            : 5000
                         : Background -- testing events             : 5000
                         : Background -- training and testing events: 10000
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.383  +0.379  +0.387
                         :    var2:  +0.383  +1.000  +0.395  +0.402
                         :    var3:  +0.379  +0.395  +1.000  +0.388
                         :    var4:  +0.387  +0.402  +0.388  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.362  +0.373  +0.393
                         :    var2:  +0.362  +1.000  +0.376  +0.377
                         :    var3:  +0.373  +0.376  +1.000  +0.374
                         :    var4:  +0.393  +0.377  +0.374  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [dataset] :  
                         : 
<HEADER> Factory                  : Train method: Fisher for Classification
                         : 
<HEADER> Fisher                   : Results for Fisher coefficients:
                         : -----------------------
                         : Variable:  Coefficient:
                         : -----------------------
                         :     var1:       -0.056
                         :     var2:       -0.015
                         :     var3:       +0.098
                         :     var4:       +0.215
                         : (offset):       -0.022
                         : -----------------------
                         : Elapsed time for training with 10000 events: 0.00193 sec         
<HEADER> Fisher                   : [dataset] : Evaluation of Fisher on training sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.000748 sec       
                         : Creating xml weight file: dataset/weights/TMVAClassificationCategory_Fisher.weights.xml
                         : Creating standalone class: dataset/weights/TMVAClassificationCategory_Fisher.class.C
<HEADER> Factory                  : Training finished
                         : 
<HEADER> Factory                  : Train method: Likelihood for Classification
                         : 
                         : Filling reference histograms
                         : Building PDF out of reference histograms
                         : Elapsed time for training with 10000 events: 0.0386 sec         
<HEADER> Likelihood               : [dataset] : Evaluation of Likelihood on training sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00614 sec       
                         : Creating xml weight file: dataset/weights/TMVAClassificationCategory_Likelihood.weights.xml
                         : Creating standalone class: dataset/weights/TMVAClassificationCategory_Likelihood.class.C
                         : TMVACC.root:/dataset/Method_Likelihood/Likelihood
<HEADER> Factory                  : Training finished
                         : 
<HEADER> Factory                  : Train method: FisherCat for Classification
                         : 
                         : Train all sub-classifiers for Classification ...
                         : Rebuilding Dataset Category_Fisher_1_dsi
                         : Building event vectors for type 2 Signal
                         : Dataset[Category_Fisher_1_dsi] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[Category_Fisher_1_dsi] :  create input formulas for tree TreeB
<HEADER> DataSetFactory           : [Category_Fisher_1_dsi] : Number of events in input trees
                         : Dataset[Category_Fisher_1_dsi] :     Signal     requirement: "abs(eta)<=1.3"
                         : Dataset[Category_Fisher_1_dsi] :     Signal          -- number of events passed: 5123   / sum of weights: 5123 
                         : Dataset[Category_Fisher_1_dsi] :     Signal          -- efficiency             : 0.5123
                         : Dataset[Category_Fisher_1_dsi] :     Background requirement: "abs(eta)<=1.3"
                         : Dataset[Category_Fisher_1_dsi] :     Background      -- number of events passed: 5134   / sum of weights: 5134 
                         : Dataset[Category_Fisher_1_dsi] :     Background      -- efficiency             : 0.5134
                         : Dataset[Category_Fisher_1_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.5123 preselection efficiency)
                         : Dataset[Category_Fisher_1_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.5134 preselection efficiency)
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 2561
                         : Signal     -- testing events             : 2561
                         : Signal     -- training and testing events: 5122
                         : Dataset[Category_Fisher_1_dsi] : Signal     -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5123
                         : Background -- training events            : 2567
                         : Background -- testing events             : 2567
                         : Background -- training and testing events: 5134
                         : Dataset[Category_Fisher_1_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5134
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.006  +0.008  -0.021
                         :    var2:  -0.006  +1.000  +0.002  +0.011
                         :    var3:  +0.008  +0.002  +1.000  -0.003
                         :    var4:  -0.021  +0.011  -0.003  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.022  -0.027  +0.012
                         :    var2:  -0.022  +1.000  -0.013  -0.009
                         :    var3:  -0.027  -0.013  +1.000  -0.019
                         :    var4:  +0.012  -0.009  -0.019  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [Category_Fisher_1_dsi] :  
                         : 
                         : Train method: Category_Fisher_1 for Classification
<HEADER> Category_Fisher_1        : Results for Fisher coefficients:
                         : -----------------------
                         : Variable:  Coefficient:
                         : -----------------------
                         :     var1:       +0.106
                         :     var2:       +0.152
                         :     var3:       +0.254
                         :     var4:       +0.379
                         : (offset):       +0.663
                         : -----------------------
                         : Elapsed time for training with 5128 events: 0.00126 sec         
<HEADER> Category_Fisher_1        : [Category_Fisher_1_dsi] : Evaluation of Category_Fisher_1 on training sample (5128 events)
                         : Elapsed time for evaluation of 5128 events: 0.000583 sec       
                         : Training finished
                         : Rebuilding Dataset Category_Fisher_2_dsi
                         : Building event vectors for type 2 Signal
                         : Dataset[Category_Fisher_2_dsi] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[Category_Fisher_2_dsi] :  create input formulas for tree TreeB
<HEADER> DataSetFactory           : [Category_Fisher_2_dsi] : Number of events in input trees
                         : Dataset[Category_Fisher_2_dsi] :     Signal     requirement: "abs(eta)>1.3"
                         : Dataset[Category_Fisher_2_dsi] :     Signal          -- number of events passed: 4877   / sum of weights: 4877 
                         : Dataset[Category_Fisher_2_dsi] :     Signal          -- efficiency             : 0.4877
                         : Dataset[Category_Fisher_2_dsi] :     Background requirement: "abs(eta)>1.3"
                         : Dataset[Category_Fisher_2_dsi] :     Background      -- number of events passed: 4866   / sum of weights: 4866 
                         : Dataset[Category_Fisher_2_dsi] :     Background      -- efficiency             : 0.4866
                         : Dataset[Category_Fisher_2_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.4877 preselection efficiency)
                         : Dataset[Category_Fisher_2_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.4866 preselection efficiency)
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 2438
                         : Signal     -- testing events             : 2438
                         : Signal     -- training and testing events: 4876
                         : Dataset[Category_Fisher_2_dsi] : Signal     -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4877
                         : Background -- training events            : 2433
                         : Background -- testing events             : 2433
                         : Background -- training and testing events: 4866
                         : Dataset[Category_Fisher_2_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4866
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.006  -0.029  -0.001
                         :    var2:  +0.006  +1.000  +0.015  -0.002
                         :    var3:  -0.029  +0.015  +1.000  -0.006
                         :    var4:  -0.001  -0.002  -0.006  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.005  +0.005  +0.012
                         :    var2:  -0.005  +1.000  +0.018  +0.029
                         :    var3:  +0.005  +0.018  +1.000  -0.001
                         :    var4:  +0.012  +0.029  -0.001  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [Category_Fisher_2_dsi] :  
                         : 
                         : Train method: Category_Fisher_2 for Classification
<HEADER> Category_Fisher_2        : Results for Fisher coefficients:
                         : -----------------------
                         : Variable:  Coefficient:
                         : -----------------------
                         :     var1:       +0.096
                         :     var2:       +0.138
                         :     var3:       +0.244
                         :     var4:       +0.368
                         : (offset):       -0.722
                         : -----------------------
                         : Elapsed time for training with 4871 events: 0.00119 sec         
<HEADER> Category_Fisher_2        : [Category_Fisher_2_dsi] : Evaluation of Category_Fisher_2 on training sample (4871 events)
                         : Elapsed time for evaluation of 4871 events: 0.000562 sec       
                         : Training finished
                         : Begin ranking of input variables...
<HEADER> Category_Fisher_1        : Ranking result (top variable is best ranked)
                         : -------------------------------
                         : Rank : Variable  : Discr. power
                         : -------------------------------
                         :    1 : var4      : 2.215e-01
                         :    2 : var3      : 1.132e-01
                         :    3 : var2      : 4.361e-02
                         :    4 : var1      : 1.980e-02
                         : -------------------------------
<HEADER> Category_Fisher_2        : Ranking result (top variable is best ranked)
                         : -------------------------------
                         : Rank : Variable  : Discr. power
                         : -------------------------------
                         :    1 : var4      : 2.181e-01
                         :    2 : var3      : 1.067e-01
                         :    3 : var2      : 4.196e-02
                         :    4 : var1      : 1.785e-02
                         : -------------------------------
                         : Elapsed time for training with 10000 events: 0.0303 sec         
<HEADER> Category_Fisher_1        : [Category_Fisher_1_dsi] : Evaluation of Category_Fisher_1 on training sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00221 sec       
<HEADER> Category_Fisher_2        : [Category_Fisher_2_dsi] : Evaluation of Category_Fisher_2 on training sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00125 sec       
                         : Creating xml weight file: dataset/weights/TMVAClassificationCategory_FisherCat.weights.xml
<HEADER> Factory                  : Training finished
                         : 
<HEADER> Factory                  : Train method: LikelihoodCat for Classification
                         : 
                         : Train all sub-classifiers for Classification ...
                         : Rebuilding Dataset Category_Likelihood_1_dsi
                         : Building event vectors for type 2 Signal
                         : Dataset[Category_Likelihood_1_dsi] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[Category_Likelihood_1_dsi] :  create input formulas for tree TreeB
<HEADER> DataSetFactory           : [Category_Likelihood_1_dsi] : Number of events in input trees
                         : Dataset[Category_Likelihood_1_dsi] :     Signal     requirement: "abs(eta)<=1.3"
                         : Dataset[Category_Likelihood_1_dsi] :     Signal          -- number of events passed: 5123   / sum of weights: 5123 
                         : Dataset[Category_Likelihood_1_dsi] :     Signal          -- efficiency             : 0.5123
                         : Dataset[Category_Likelihood_1_dsi] :     Background requirement: "abs(eta)<=1.3"
                         : Dataset[Category_Likelihood_1_dsi] :     Background      -- number of events passed: 5134   / sum of weights: 5134 
                         : Dataset[Category_Likelihood_1_dsi] :     Background      -- efficiency             : 0.5134
                         : Dataset[Category_Likelihood_1_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.5123 preselection efficiency)
                         : Dataset[Category_Likelihood_1_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.5134 preselection efficiency)
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 2561
                         : Signal     -- testing events             : 2561
                         : Signal     -- training and testing events: 5122
                         : Dataset[Category_Likelihood_1_dsi] : Signal     -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5123
                         : Background -- training events            : 2567
                         : Background -- testing events             : 2567
                         : Background -- training and testing events: 5134
                         : Dataset[Category_Likelihood_1_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5134
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.006  +0.008  -0.021
                         :    var2:  -0.006  +1.000  +0.002  +0.011
                         :    var3:  +0.008  +0.002  +1.000  -0.003
                         :    var4:  -0.021  +0.011  -0.003  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.022  -0.027  +0.012
                         :    var2:  -0.022  +1.000  -0.013  -0.009
                         :    var3:  -0.027  -0.013  +1.000  -0.019
                         :    var4:  +0.012  -0.009  -0.019  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [Category_Likelihood_1_dsi] :  
                         : 
                         : Train method: Category_Likelihood_1 for Classification
                         : Filling reference histograms
                         : Building PDF out of reference histograms
                         : Elapsed time for training with 5128 events: 0.024 sec         
<HEADER> Category_Likelihood_1    : [Category_Likelihood_1_dsi] : Evaluation of Category_Likelihood_1 on training sample (5128 events)
                         : Elapsed time for evaluation of 5128 events: 0.00405 sec       
                         : TMVACC.root:/dataset/Method_Category/LikelihoodCat/Method_Likelihood/Category_Likelihood_1
                         : Training finished
                         : Rebuilding Dataset Category_Likelihood_2_dsi
                         : Building event vectors for type 2 Signal
                         : Dataset[Category_Likelihood_2_dsi] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[Category_Likelihood_2_dsi] :  create input formulas for tree TreeB
<HEADER> DataSetFactory           : [Category_Likelihood_2_dsi] : Number of events in input trees
                         : Dataset[Category_Likelihood_2_dsi] :     Signal     requirement: "abs(eta)>1.3"
                         : Dataset[Category_Likelihood_2_dsi] :     Signal          -- number of events passed: 4877   / sum of weights: 4877 
                         : Dataset[Category_Likelihood_2_dsi] :     Signal          -- efficiency             : 0.4877
                         : Dataset[Category_Likelihood_2_dsi] :     Background requirement: "abs(eta)>1.3"
                         : Dataset[Category_Likelihood_2_dsi] :     Background      -- number of events passed: 4866   / sum of weights: 4866 
                         : Dataset[Category_Likelihood_2_dsi] :     Background      -- efficiency             : 0.4866
                         : Dataset[Category_Likelihood_2_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.4877 preselection efficiency)
                         : Dataset[Category_Likelihood_2_dsi] :  you have opted for scaling the number of requested training/testing events
                         :  to be scaled by the preselection efficiency
                         :  ( 0 * 0.4866 preselection efficiency)
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 2438
                         : Signal     -- testing events             : 2438
                         : Signal     -- training and testing events: 4876
                         : Dataset[Category_Likelihood_2_dsi] : Signal     -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4877
                         : Background -- training events            : 2433
                         : Background -- testing events             : 2433
                         : Background -- training and testing events: 4866
                         : Dataset[Category_Likelihood_2_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4866
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.006  -0.029  -0.001
                         :    var2:  +0.006  +1.000  +0.015  -0.002
                         :    var3:  -0.029  +0.015  +1.000  -0.006
                         :    var4:  -0.001  -0.002  -0.006  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.005  +0.005  +0.012
                         :    var2:  -0.005  +1.000  +0.018  +0.029
                         :    var3:  +0.005  +0.018  +1.000  -0.001
                         :    var4:  +0.012  +0.029  -0.001  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [Category_Likelihood_2_dsi] :  
                         : 
                         : Train method: Category_Likelihood_2 for Classification
                         : Filling reference histograms
                         : Building PDF out of reference histograms
                         : Elapsed time for training with 4871 events: 0.0229 sec         
<HEADER> Category_Likelihood_2    : [Category_Likelihood_2_dsi] : Evaluation of Category_Likelihood_2 on training sample (4871 events)
                         : Elapsed time for evaluation of 4871 events: 0.00389 sec       
                         : TMVACC.root:/dataset/Method_Category/LikelihoodCat/Method_Likelihood/Category_Likelihood_2
                         : Training finished
                         : Begin ranking of input variables...
<HEADER> Category_Likelihood_1    : Ranking result (top variable is best ranked)
                         : -----------------------------------
                         : Rank : Variable  : Delta Separation
                         : -----------------------------------
                         :    1 : var4      : 1.328e-01
                         :    2 : var3      : 4.844e-02
                         :    3 : var1      : 1.142e-02
                         :    4 : var2      : -4.784e-03
                         : -----------------------------------
<HEADER> Category_Likelihood_2    : Ranking result (top variable is best ranked)
                         : -----------------------------------
                         : Rank : Variable  : Delta Separation
                         : -----------------------------------
                         :    1 : var4      : 1.499e-01
                         :    2 : var3      : 7.807e-02
                         :    3 : var1      : 3.084e-02
                         :    4 : var2      : 2.260e-02
                         : -----------------------------------
                         : Elapsed time for training with 10000 events: 0.198 sec         
<HEADER> Category_Likelihood_1    : [Category_Likelihood_1_dsi] : Evaluation of Category_Likelihood_1 on training sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00792 sec       
<HEADER> Category_Likelihood_2    : [Category_Likelihood_2_dsi] : Evaluation of Category_Likelihood_2 on training sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00741 sec       
                         : Creating xml weight file: dataset/weights/TMVAClassificationCategory_LikelihoodCat.weights.xml
<HEADER> Factory                  : Training finished
                         : 
                         : Ranking input variables (method specific)...
<HEADER> Fisher                   : Ranking result (top variable is best ranked)
                         : -------------------------------
                         : Rank : Variable  : Discr. power
                         : -------------------------------
                         :    1 : var4      : 1.447e-01
                         :    2 : var3      : 7.194e-02
                         :    3 : var2      : 2.379e-02
                         :    4 : var1      : 1.174e-02
                         : -------------------------------
<HEADER> Likelihood               : Ranking result (top variable is best ranked)
                         : -----------------------------------
                         : Rank : Variable  : Delta Separation
                         : -----------------------------------
                         :    1 : var4      : 9.878e-02
                         :    2 : var3      : 5.677e-02
                         :    3 : var2      : 3.557e-02
                         :    4 : var1      : 1.915e-02
                         : -----------------------------------
                         : No variable ranking supplied by classifier: FisherCat
                         : No variable ranking supplied by classifier: LikelihoodCat
<HEADER> Factory                  : === Destroy and recreate all methods via weight files for testing ===
                         : 
                         : Reading weight file: dataset/weights/TMVAClassificationCategory_Fisher.weights.xml
                         : Reading weight file: dataset/weights/TMVAClassificationCategory_Likelihood.weights.xml
                         : Reading weight file: dataset/weights/TMVAClassificationCategory_FisherCat.weights.xml
                         : Recreating sub-classifiers from XML-file 
<HEADER> DataSetInfo              : [Category_Fisher_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Fisher_1_dsi] : Added class "Background"
<HEADER> DataSetInfo              : [Category_Fisher_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Fisher_2_dsi] : Added class "Background"
                         : Reading weight file: dataset/weights/TMVAClassificationCategory_LikelihoodCat.weights.xml
                         : Recreating sub-classifiers from XML-file 
<HEADER> DataSetInfo              : [Category_Likelihood_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Likelihood_1_dsi] : Added class "Background"
<HEADER> DataSetInfo              : [Category_Likelihood_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo              : [Category_Likelihood_2_dsi] : Added class "Background"
<HEADER> Factory                  : Test all methods
<HEADER> Factory                  : Test method: Fisher for Classification performance
                         : 
<HEADER> Fisher                   : [dataset] : Evaluation of Fisher on testing sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00235 sec       
<HEADER> Factory                  : Test method: Likelihood for Classification performance
                         : 
<HEADER> Likelihood               : [dataset] : Evaluation of Likelihood on testing sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00739 sec       
<HEADER> Factory                  : Test method: FisherCat for Classification performance
                         : 
<HEADER> Category_Fisher_1        : [Category_Fisher_1_dsi] : Evaluation of Category_Fisher_1 on testing sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00127 sec       
<HEADER> Category_Fisher_2        : [Category_Fisher_2_dsi] : Evaluation of Category_Fisher_2 on testing sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.000944 sec       
<HEADER> Factory                  : Test method: LikelihoodCat for Classification performance
                         : 
<HEADER> Category_Likelihood_1    : [Category_Likelihood_1_dsi] : Evaluation of Category_Likelihood_1 on testing sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00677 sec       
<HEADER> Category_Likelihood_2    : [Category_Likelihood_2_dsi] : Evaluation of Category_Likelihood_2 on testing sample (10000 events)
                         : Elapsed time for evaluation of 10000 events: 0.00689 sec       
<HEADER> Factory                  : Evaluate all methods
<HEADER> Factory                  : Evaluate classifier: Fisher
                         : 
<HEADER> Fisher                   : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
<HEADER> TFHandler_Fisher         : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.010009     1.2852   [    -5.3119     4.5609 ]
                         :     var2:  0.0034020     1.3067   [    -4.1946     4.6723 ]
                         :     var3: -0.0054637     1.3764   [    -4.5297     4.8202 ]
                         :     var4:    0.13424     1.4680   [    -5.1002     4.9850 ]
                         : -----------------------------------------------------------
<HEADER> Factory                  : Evaluate classifier: Likelihood
                         : 
<HEADER> Likelihood               : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
<HEADER> TFHandler_Likelihood     : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.010009     1.2852   [    -5.3119     4.5609 ]
                         :     var2:  0.0034020     1.3067   [    -4.1946     4.6723 ]
                         :     var3: -0.0054637     1.3764   [    -4.5297     4.8202 ]
                         :     var4:    0.13424     1.4680   [    -5.1002     4.9850 ]
                         : -----------------------------------------------------------
<HEADER> Factory                  : Evaluate classifier: FisherCat
                         : 
<HEADER> FisherCat                : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
<HEADER> TFHandler_FisherCat      : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.010009     1.2852   [    -5.3119     4.5609 ]
                         :     var2:  0.0034020     1.3067   [    -4.1946     4.6723 ]
                         :     var3: -0.0054637     1.3764   [    -4.5297     4.8202 ]
                         :     var4:    0.13424     1.4680   [    -5.1002     4.9850 ]
                         : -----------------------------------------------------------
<HEADER> Factory                  : Evaluate classifier: LikelihoodCat
                         : 
<HEADER> LikelihoodCat            : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
<HEADER> TFHandler_LikelihoodCat  : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.010009     1.2852   [    -5.3119     4.5609 ]
                         :     var2:  0.0034020     1.3067   [    -4.1946     4.6723 ]
                         :     var3: -0.0054637     1.3764   [    -4.5297     4.8202 ]
                         :     var4:    0.13424     1.4680   [    -5.1002     4.9850 ]
                         : -----------------------------------------------------------
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : dataset       FisherCat      : 0.913
                         : dataset       LikelihoodCat  : 0.912
                         : dataset       Fisher         : 0.807
                         : dataset       Likelihood     : 0.769
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : dataset              FisherCat      : 0.342 (0.362)       0.752 (0.744)      0.916 (0.921)
                         : dataset              LikelihoodCat  : 0.345 (0.350)       0.750 (0.744)      0.915 (0.920)
                         : dataset              Fisher         : 0.185 (0.178)       0.475 (0.487)      0.746 (0.748)
                         : dataset              Likelihood     : 0.212 (0.226)       0.454 (0.455)      0.602 (0.620)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
<HEADER> Dataset:dataset          : Created tree 'TestTree' with 10000 events
                         : 
<HEADER> Dataset:dataset          : Created tree 'TrainTree' with 10000 events
                         : 
<HEADER> Factory                  : Thank you for using TMVA!
                         : For citation information, please visit: http://tmva.sf.net/citeTMVA.html
==> Wrote root file: TMVACC.root
==> TMVAClassificationCategory is done!