This tutorial shows how to do regression in TMVA with neural networks trained with keras. 
 
from ROOT import TMVA, TFile, TCut, gROOT
from subprocess import call
 
 
 
    
 
    
        learning_rate=0.01), weighted_metrics=[])
 
    
 
 
def run():
 
                               '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Regression')
 
 
            if name != 'fvalue':
 
        
                                              'nTrain_Regression=1000:SplitMode=Random:NormMode=NumEvents:!V')
 
        
                           'H:!V:VarTransform=D,G:FilenameModel=modelRegression.h5:FilenameTrainedModel=trainedModelRegression.h5:NumEpochs=20:BatchSize=32')
                           '!H:!V:VarTransform=D,G:NTrees=1000:BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=4')
 
        
 
 
if __name__ == "__main__":
    
 
    
 
    
    run()
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
A specialized string object used for TTree selections.
 
This is the main MVA steering class.
 
- Date
 - 2017 
 
- Author
 - TMVA Team 
 
Definition in file RegressionKeras.py.