This tutorial shows how to define and generate a keras model for use with TMVA. 
 
 
num_input_nodes = 4
num_output_nodes = 2
num_hidden_layers = 1
nodes_hidden_layer = 64
l2_val = 1e-5
 
 
model.add(
Dense(nodes_hidden_layer, activation=
'relu', kernel_regularizer=
l2(l2_val), input_dim=num_input_nodes))
 
 
for k 
in range(num_hidden_layers-1):
 
    model.add(
Dense(nodes_hidden_layer, activation=
'relu', kernel_regularizer=
l2(l2_val)))
 
 
 
model.compile(loss=
'categorical_crossentropy', optimizer=
SGD(learning_rate=0.01), weighted_metrics=[
'accuracy',])
 
 
 
 
 
try:
    plot_model(model, to_file=
'model.png', show_shapes=
True)
 
except:
    print('[INFO] Failed to make model plot')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
- Date
 - 2017 
 
- Author
 - TMVA Team 
 
Definition in file GenerateModel.py.