64   fDeltaPruneStrength(0),
 
 
   86      Log() << kWARNING << 
"Sorry automatic pruning strength determination is not implemented yet" << 
Endl;
 
   94   fNodePurityLimit = 
dt->GetNodePurityLimit();
 
   97      Log() << kFATAL << 
"Sorry automatic pruning strength determination is not implemented yet" << 
Endl;
 
  168      return new PruningInfo( -1.0, fPruneStrength, fPruneSequence );
 
 
  180      this->FindListOfNodes(
l);
 
  181      this->FindListOfNodes(
r);
 
  182      if (this->GetSubTreeError(node) >= this->GetNodeError(node)) {
 
  184         fPruneSequence.push_back(node);
 
 
  199         (
l->GetNEvents() * this->GetSubTreeError(
l) +
 
  200          r->GetNEvents() * this->GetSubTreeError(
r)) /
 
  205      return this->GetNodeError(node);
 
 
  232   errorRate = std::min(1.0,(1.0 - (
f-fPruneStrength*df)));
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
virtual DecisionTreeNode * GetLeft() const
 
Int_t GetNodeType(void) const
return node type: 1 signal node, -1 bkg leave, 0 intermediate Node
 
Float_t GetNEvents(void) const
return the number of events that entered the node (during training), or -1 if traininfo undefined
 
Float_t GetPurity(void) const
return S/(S+B) (purity) at this node (from training)
 
Bool_t IsTerminal() const
flag indicates whether this node is terminal
 
virtual DecisionTreeNode * GetRight() const
 
Implementation of a Decision Tree.
 
ostringstream derivative to redirect and format output
 
MsgLogger & Endl(MsgLogger &ml)
 
Double_t Sqrt(Double_t x)
Returns the square root of x.