30#ifndef ROOT_TMVA_DecisionTreeNode 
   31#define ROOT_TMVA_DecisionTreeNode 
  269      virtual void Print( std::ostream& os ) 
const;
 
  272      virtual void PrintRec( std::ostream&  os ) 
const;
 
  375      static MsgLogger& 
Log();
 
 
#define ClassDef(name, id)
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
winID h TVirtualViewer3D TVirtualGLPainter p
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void on
 
#define TMVA_VERSION_CODE
 
Float_t fSumTarget2
sum of weight*target^2 used for the calculation of the variance (regression)
 
Double_t fG
minimum alpha in subtree rooted at this node
 
Double_t fAlpha
critical alpha for this node
 
Double_t fNodeR
node resubstitution estimate, R(t)
 
std::vector< Float_t > fSampleMax
the maxima for each ivar of the sample on the node during training
 
Float_t fNEvents
number of events in that entered the node (during training)
 
Float_t fNEvents_unboosted
number of events in that entered the node (during training)
 
Float_t fSeparationIndex
measure of "purity" (separation between S and B) AT this node
 
Float_t fNEvents_unweighted
number of events in that entered the node (during training)
 
Float_t fNSigEvents
sum of weights of signal event in the node
 
Float_t fNSigEvents_unweighted
sum of signal event in the node
 
Float_t fSeparationGain
measure of "purity", separation, or information gained BY this nodes selection
 
Float_t fNSigEvents_unboosted
sum of signal event in the node
 
DTNodeTrainingInfo(const DTNodeTrainingInfo &n)
 
Float_t fNBkgEvents_unboosted
sum of backgr event in the node
 
Double_t fSubTreeR
R(T) = Sum(R(t) : t in ~T)
 
Double_t fNB
sum of weights of background events from the pruning sample in this node
 
Double_t fCC
debug variable for cost complexity pruning ..
 
std::vector< Float_t > fSampleMin
the minima for each ivar of the sample on the node during training
 
Float_t fSumTarget
sum of weight*target used for the calculation of the variance (regression)
 
Double_t fNS
ditto for the signal events
 
Float_t fNBkgEvents
sum of weights of backgr event in the node
 
Int_t fNTerminal
number of terminal nodes in subtree rooted at this node
 
Float_t fNBkgEvents_unweighted
sum of backgr event in the node
 
virtual void AddContentToNode(std::stringstream &s) const
adding attributes to tree node (well, was used in BinarySearchTree, and somehow I guess someone progr...
 
void SetNEvents_unweighted(Float_t nev)
set the number of unweighted events that entered the node (during training), if traininfo defined
 
Float_t GetNBkgEvents_unboosted(void) const
return the sum of unboosted backgr weights in the node, or -1 if traininfo undefined
 
virtual void ReadAttributes(void *node, UInt_t tmva_Version_Code=262657)
 
void SetCC(Double_t cc)
Set CC, if traininfo defined, otherwise Log Fatal.
 
DTNodeTrainingInfo * fTrainInfo
 
Bool_t fIsTerminalNode
! flag to set node as terminal (i.e., without deleting its descendants)
 
virtual ~DecisionTreeNode()
destructor
 
Float_t GetNSigEvents_unweighted(void) const
 
Float_t GetNBkgEvents_unweighted(void) const
return the sum of unweighted backgr weights in the node, or -1 if traininfo undefined
 
void SetNodeType(Int_t t)
set node type: 1 signal node, -1 bkg leave, 0 intermediate Node
 
Int_t fNodeType
Type of node: -1 == Bkg-leaf, 1 == Signal-leaf, 0 = internal.
 
Double_t GetSubTreeR() const
return the resubstitution estimate, R(T_t), of the tree rooted at this node, or -1 if traininfo undef...
 
Float_t GetSeparationIndex(void) const
return the separation index AT this node, or 0 if traininfo undefined
 
void SetSeparationGain(Float_t sep)
set the separation, or information gained BY this node's selection, if traininfo defined
 
void SetNBkgEvents(Float_t b)
set the sum of the backgr weights in the node, if traininfo defined
 
void SetCutType(Bool_t t)
set true: if event variable > cutValue ==> signal , false otherwise
 
Float_t GetNSigEvents_unboosted(void) const
return the sum of unboosted signal weights in the node, or -1 if traininfo undefined
 
Double_t GetNSValidation() const
return number of signal events from the pruning validation sample, or -1 if traininfo undefined
 
static void SetIsTraining(bool on)
 
void PrintPrune(std::ostream &os) const
printout of the node (can be read in with ReadDataRecord)
 
Float_t GetSumTarget() const
return sum target, or -9999 if traininfo undefined
 
void IncrementNEvents_unweighted()
increment the number of events that entered the node (during training), if traininfo defined
 
void PrintRecPrune(std::ostream &os) const
recursive printout of the node and its daughters
 
void SetFisherCoeff(Int_t ivar, Double_t coeff)
set fisher coefficients
 
void SetNSigEvents_unboosted(Float_t s)
set the sum of the unboosted signal events in the node, if traininfo defined
 
void SetSumTarget2(Float_t t2)
set sum target 2, if traininfo defined
 
Float_t fRMS
response RMS of the regression node
 
void SetAlphaMinSubtree(Double_t g)
set the minimum alpha in the tree rooted at this node, if traininfo defined
 
static UInt_t fgTmva_Version_Code
set only when read from weightfile
 
void IncrementNBkgEvents(Float_t b)
increment the sum of the backgr weights in the node, if traininfo defined
 
Short_t fSelector
index of variable used in node selection (decision tree)
 
void SetNEvents_unboosted(Float_t nev)
set the number of unboosted events that entered the node (during training), if traininfo defined
 
Float_t GetNSigEvents(void) const
return the sum of the signal weights in the node, or -1 if traininfo undefined
 
Float_t fPurity
the node purity
 
virtual void SetLeft(Node *l)
 
Double_t GetAlphaMinSubtree() const
return the minimum alpha in the tree rooted at this node, or -1 if traininfo undefined
 
void SetTerminal(Bool_t s=kTRUE)
 
Float_t GetNEvents_unweighted(void) const
return the number of unweighted events that entered the node (during training), or -1 if traininfo un...
 
void SetResponse(Float_t r)
set the response of the node (for regression)
 
UInt_t GetNFisherCoeff() const
 
void SetSampleMax(UInt_t ivar, Float_t xmax)
set the maximum of variable ivar from the training sample that pass/end up in this node,...
 
void ClearNodeAndAllDaughters()
clear the nodes (their S/N, Nevents etc), just keep the structure of the tree
 
virtual Bool_t GoesLeft(const Event &) const
test event if it descends the tree at this node to the left
 
static void SetTmvaVersionCode(UInt_t code)
 
virtual void ReadContent(std::stringstream &s)
reading attributes from tree node (well, was used in BinarySearchTree, and somehow I guess someone pr...
 
void SetNBValidation(Double_t b)
set number of background events from the pruning validation sample, if traininfo defined
 
Float_t GetRMS(void) const
return the RMS of the response of the node (for regression)
 
void IncrementNEvents(Float_t nev)
 
void SetPurity(void)
return the S/(S+B) (purity) for the node REM: even if nodes with purity 0.01 are very PURE background...
 
void SetSubTreeR(Double_t r)
set the resubstitution estimate, R(T_t), of the tree rooted at this node, if traininfo defined
 
void AddToSumTarget2(Float_t t2)
add to sum target 2, if traininfo defined
 
virtual void Print(std::ostream &os) const
print the node
 
virtual DecisionTreeNode * GetLeft() const
 
Double_t GetNodeR() const
return the node resubstitution estimate, R(t), for Cost Complexity pruning, or -1 if traininfo undefi...
 
Float_t fCutValue
cut value applied on this node to discriminate bkg against sig
 
Float_t GetSumTarget2() const
return sum target 2, or -9999 if traininfo undefined
 
virtual Bool_t GoesRight(const Event &) const
test event if it descends the tree at this node to the right
 
DecisionTreeNode()
constructor of an essentially "empty" node floating in space
 
void SetNFisherCoeff(Int_t nvars)
 
virtual void AddAttributesToNode(void *node) const
add attribute to xml
 
Short_t GetSelector() const
return index of variable used for discrimination at this node
 
virtual Bool_t ReadDataRecord(std::istream &is, UInt_t tmva_Version_Code=262657)
Read the data block.
 
static UInt_t GetTmvaVersionCode()
 
void SetNSigEvents(Float_t s)
set the sum of the signal weights in the node, if traininfo defined
 
Float_t GetResponse(void) const
return the response of the node (for regression)
 
Float_t GetCutValue(void) const
return the cut value applied at this node
 
Int_t GetNodeType(void) const
return node type: 1 signal node, -1 bkg leave, 0 intermediate Node
 
Double_t GetAlpha() const
return the critical point alpha, or -1 if traininfo undefined
 
Int_t GetNTerminal() const
return number of terminal nodes in the subtree rooted here, or -1 if traininfo undefined
 
void IncrementNBkgEvents_unweighted()
increment the sum of the backgr weights in the node, if traininfo defined
 
Bool_t fCutType
true: if event variable > cutValue ==> signal , false otherwise
 
Bool_t GetCutType(void) const
return kTRUE: Cuts select signal, kFALSE: Cuts select bkg
 
void ResetValidationData()
temporary stored node values (number of events, etc.) that originate not from the training but from t...
 
virtual void PrintRec(std::ostream &os) const
recursively print the node and its daughters (--> print the 'tree')
 
void SetNSigEvents_unweighted(Float_t s)
set the sum of the unweighted signal events in the node, if traininfo defined
 
Float_t GetNEvents(void) const
return the number of events that entered the node (during training), or -1 if traininfo undefined
 
Double_t GetCC() const
return CC, or -1 if traininfo undefined
 
virtual Node * CreateNode() const
 
Double_t GetNBValidation() const
return number of background events from the pruning validation sample, or -1 if traininfo undefined
 
static bool fgIsTraining
static variable to flag training phase in which we need fTrainInfo
 
void SetAlpha(Double_t alpha)
set the critical point alpha, if traininfo defined
 
void SetSeparationIndex(Float_t sep)
set the chosen index, measure of "purity" (separation between S and B) AT this node,...
 
virtual void SetRight(Node *r)
 
void SetRMS(Float_t r)
set the RMS of the response of the node (for regression)
 
Float_t fResponse
response value in case of regression
 
void IncrementNSigEvents_unweighted()
increment the sum of the signal weights in the node, if traininfo defined
 
void SetSumTarget(Float_t t)
set sum target, if traininfo defined
 
virtual void SetParent(Node *p)
 
void SetNodeR(Double_t r)
set the node resubstitution estimate, R(t), for Cost Complexity pruning, if traininfo defined
 
void SetNBkgEvents_unboosted(Float_t b)
set the sum of the unboosted backgr events in the node, if traininfo defined
 
Float_t GetPurity(void) const
return S/(S+B) (purity) at this node (from training)
 
Float_t GetNEvents_unboosted(void) const
return the number of unboosted events that entered the node (during training), or -1 if traininfo und...
 
void IncrementNSigEvents(Float_t s)
increment the sum of the signal weights in the node, if traininfo defined
 
Float_t GetSeparationGain(void) const
return the gain in separation obtained by this node's selection, or -1 if traininfo undefined
 
Float_t GetSampleMax(UInt_t ivar) const
return the maximum of variable ivar from the training sample that pass/end up in this node,...
 
void SetCutValue(Float_t c)
set the cut value applied at this node
 
Float_t GetNBkgEvents(void) const
return the sum of the backgr weights in the node, or -1 if traininfo undefined
 
Float_t GetSampleMin(UInt_t ivar) const
return the minimum of variable ivar from the training sample that pass/end up in this node,...
 
void SetSampleMin(UInt_t ivar, Float_t xmin)
set the minimum of variable ivar from the training sample that pass/end up in this node,...
 
void SetSelector(Short_t i)
set index of variable used for discrimination at this node
 
std::vector< Double_t > fFisherCoeff
the fisher coeff (offset at the last element)
 
virtual DecisionTreeNode * GetParent() const
 
Double_t GetFisherCoeff(Int_t ivar) const
get fisher coefficients
 
void SetNBkgEvents_unweighted(Float_t b)
set the sum of the unweighted backgr events in the node, if traininfo defined
 
void SetNSValidation(Double_t s)
set number of signal events from the pruning validation sample, if traininfo defined
 
void AddToSumTarget(Float_t t)
add to sum target, if traininfo defined
 
Bool_t IsTerminal() const
flag indicates whether this node is terminal
 
void SetNTerminal(Int_t n)
set number of terminal nodes in the subtree rooted here, if traininfo defined
 
void SetNEvents(Float_t nev)
set the number of events that entered the node (during training), if traininfo defined
 
virtual DecisionTreeNode * GetRight() const
 
Node for the BinarySearch or Decision Trees.
 
Node * fLeft
pointers to the two "daughter" nodes
 
Node * fParent
the previous (parent) node
 
Node * fRight
pointers to the two "daughter" nodes
 
create variable transformations