This tutorial shows how to do classification in TMVA with neural networks trained with keras. 
 
from ROOT import TMVA, TFile, TCut, gROOT
from subprocess import call
 
 
 
    
 
    
 
    
                  optimizer=
SGD(learning_rate=0.01), weighted_metrics=[
'accuracy', ])
 
 
    
 
 
def run():
                               '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
 
 
 
                                              'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
 
        
                           '!H:!V:Fisher:VarTransform=D,G')
                           'H:!V:VarTransform=D,G:FilenameModel=modelClassification.h5:FilenameTrainedModel=trainedModelClassification.h5:NumEpochs=20:BatchSize=32')
 
        
 
 
if __name__ == "__main__":
    
 
    
 
    
    run()
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
A specialized string object used for TTree selections.
 
This is the main MVA steering class.
 
- Date
 - 2017 
 
- Author
 - TMVA Team 
 
Definition in file ClassificationKeras.py.