This tutorial shows how to apply a trained model to new data (regression). 
 
 
import torch
 
from ROOT import TMVA, TFile, TString, gROOT
from array import array
from subprocess import call
 
 
 
 
 
branches = {}
    branches[branchName] = array('f', [-999])
    if branchName != 'fvalue':
 
 
 
 
def predict(model, test_X, batch_size=32):
    
 
 
    predictions = []
            X = data[0]
            outputs = model(X)
 
 
load_model_custom_objects = {"optimizer": None, "criterion": None, "train_func": None, "predict_func": predict}
 
 
print('Some example regressions:')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
 
The Reader class serves to use the MVAs in a specific analysis context.
 
- Date
 - 2020 
 
- Author
 - Anirudh Dagar aniru.nosp@m.dhda.nosp@m.gar6@.nosp@m.gmai.nosp@m.l.com - IIT, Roorkee 
 
Definition in file ApplicationRegressionPyTorch.py.