The idea is that one has a distribution coming either from data or Monte Carlo (called "reality" in the macro) and a nominal model that is not sufficiently flexible to take into account the real distribution. One wants to take into account the systematic associated with this imperfect modeling by augmenting the nominal model with some correction term (in this case a polynomial). The BernsteinCorrection utility will import into your workspace a corrected model given by nominal(x) * poly_N(x), where poly_N is an n-th order polynomial in the Bernstein basis. The degree N of the polynomial is chosen by specifying the tolerance one has in adding an extra term to the polynomial. The Bernstein basis is nice because it only has positive-definite terms and works well with PDFs. Finally, the macro makes a plot of:
[#0] WARNING:InputArguments -- The parameter 'sigma' with range [0, 10] of the RooGaussian 'nominal' exceeds the safe range of (0, inf). Advise to limit its range.
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing dataset realityData
[#1] INFO:ObjectHandling -- RooWorkSpace::import(myWorksspace) changing name of dataset from realityData to data
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::x
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooGaussian::nominal
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooConstVar::0
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::sigma
BernsteinCorrection::ImportCorrectedPdf - Doing initial Fit with nominal model
[#1] INFO:Fitting -- RooAbsPdf::fitTo(nominal_over_nominal_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx2
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_nominal_over_nominal_Int[x]_data) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(corrected_over_corrected_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_corrected_over_corrected_Int[x]_data) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(corrected_over_corrected_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_corrected_over_corrected_Int[x]_data) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(corrected_over_corrected_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_corrected_over_corrected_Int[x]_data) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(corrected_over_corrected_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_corrected_over_corrected_Int[x]_data) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(corrected_over_corrected_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_corrected_over_corrected_Int[x]_data) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(corrected_over_corrected_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_corrected_over_corrected_Int[x]_data) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooEffProd::corrected
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooBernstein::poly
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::c_0
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::c_1
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::c_2
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::c_3
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::c_4
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::c_5
[#1] INFO:ObjectHandling -- RooWorkspace::import(myWorksspace) importing RooRealVar::c_6
------ Begin Bernstein Correction Log --------
degree = 1 -log L(0) = 1216.78 -log L(1) = 1208.89 q = 15.7692 P(chi^2_1 > q) = 7.1557e-05
degree = 2 -log L(1) = 1208.89 -log L(2) = 1203.21 q = 11.3692 P(chi^2_1 > q) = 0.000746732
degree = 3 -log L(2) = 1203.21 -log L(3) = 1198.85 q = 8.72171 P(chi^2_1 > q) = 0.00314444
degree = 4 -log L(3) = 1198.85 -log L(4) = 1190.16 q = 17.3777 P(chi^2_1 > q) = 3.06393e-05
degree = 5 -log L(4) = 1190.16 -log L(5) = 1183.56 q = 13.1965 P(chi^2_1 > q) = 0.00028048
degree = 6 -log L(5) = 1183.56 -log L(6) = 1182.57 q = 1.98352 P(chi^2_1 > q) = 0.15902
------ End Bernstein Correction Log --------
[#1] INFO:Fitting -- RooAbsPdf::fitTo(nominal_over_nominal_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_nominal_over_nominal_Int[x]_realityData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
Minuit2Minimizer: Minimize with max-calls 500 convergence for edm < 1 strategy 1
Minuit2Minimizer : Valid minimum - status = 0
FVAL = 1216.77793416266286
Edm = 4.16187344562173991e-07
Nfcn = 19
sigma = 1.18138 +/- 0.0315451 (limited)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(corrected_over_corrected_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_corrected_over_corrected_Int[x]_realityData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
Minuit2Minimizer: Minimize with max-calls 3500 convergence for edm < 1 strategy 1
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
Minuit2Minimizer : Valid minimum - status = 0
FVAL = 1182.56856162134386
Edm = 0.000128904133136698251
Nfcn = 185
c_1 = 3.18336 +/- 0.783711 (limited)
c_2 = 4.80577e-06 +/- 3.11001 (limited)
c_3 = 1.19142e-06 +/- 1.51771 (limited)
c_4 = 0.966777 +/- 2.14189 (limited)
c_5 = 0.21563 +/- 67.5033 (limited)
c_6 = 10.4446 +/- 20.5651 (limited)
sigma = 1.26666 +/- 0.209609 (limited)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:NumericIntegration -- RooRealIntegral::init(corrected_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
made pdfs, make toy generator
on toy 0
on toy 1
on toy 2
on toy 3
on toy 4
on toy 5
on toy 6
on toy 7
on toy 8
on toy 9
on toy 10
on toy 11
on toy 12
on toy 13
on toy 14
on toy 15
on toy 16
on toy 17
on toy 18
on toy 19
Correction based on Bernstein Poly of degree 6
import sys
import ROOT
lowRange = -1
highRange = 5
x = ROOT.RooRealVar("x", "x", lowRange, highRange)
narrow = ROOT.RooGaussian("narrow", "", x, ROOT.RooFit.RooConst(0.0), ROOT.RooFit.RooConst(0.8))
wide = ROOT.RooGaussian("wide", "", x, ROOT.RooFit.RooConst(0.0), ROOT.RooFit.RooConst(2.0))
reality = ROOT.RooAddPdf("reality", "", [narrow, wide], ROOT.RooFit.RooConst(0.8))
data = reality.generate(x, 1000)
sigma = ROOT.RooRealVar("sigma", "", 1.0, 0, 10)
nominal = ROOT.RooGaussian("nominal", "", x, ROOT.RooFit.RooConst(0.0), sigma)
wks = ROOT.RooWorkspace("myWorksspace")
wks.Import(data, Rename="data")
wks.Import(nominal)
if ROOT.TClass.GetClass("ROOT::Minuit2::Minuit2Minimizer"):
tolerance = 0.05
bernsteinCorrection = ROOT.RooStats.BernsteinCorrection(tolerance)
degree = bernsteinCorrection.ImportCorrectedPdf(wks, "nominal", "x", "data")
if degree < 0:
ROOT.Error("rs_bernsteinCorrection", "Bernstein correction failed !")
sys.exit()
print("Correction based on Bernstein Poly of degree ", degree)
frame = x.frame()
data.plotOn(frame)
nominal.fitTo(data, PrintLevel=0)
nominal.plotOn(frame)
corrected = wks["corrected"]
if not corrected:
sys.exit()
corrected.fitTo(data, PrintLevel=0)
corrected.plotOn(frame, LineColor="r")
poly = wks["poly"]
if poly:
poly.plotOn(frame, LineColor="g", LineStyle="--")
checkSamplingDist = True
numToyMC = 20
c1 = ROOT.TCanvas()
if checkSamplingDist:
c1.Divide(1, 2)
c1.cd(1)
frame.Draw()
ROOT.gPad.Update()
if checkSamplingDist:
samplingDist = ROOT.TH1F("samplingDist", "", 20, 0, 10)
samplingDistExtra = ROOT.TH1F("samplingDistExtra", "", 20, 0, 10)
bernsteinCorrection.CreateQSamplingDist(
wks, "nominal", "x", "data", samplingDist, samplingDistExtra, degree, numToyMC
)
c1.cd(2)
samplingDistExtra.SetLineColor(ROOT.kRed)
samplingDistExtra.Draw()
samplingDist.Draw("same")
c1.SaveAs("rs_bernsteinCorrection.png")
static void SetDefaultMinimizer(const char *type, const char *algo=nullptr)
Set the default Minimizer type and corresponding algorithms.
static void SetDefaultPrintLevel(int level)
Set the default Print Level.