Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
df104_HiggsToTwoPhotons.py File Reference

Detailed Description

View in nbviewer Open in SWAN
The Higgs to two photons analysis from the ATLAS Open Data 2020 release, with RDataFrame.

This tutorial is the Higgs to two photons analysis from the ATLAS Open Data release in 2020 (http://opendata.atlas.cern/release/2020/documentation/). The data was taken with the ATLAS detector during 2016 at a center-of-mass energy of 13 TeV. Although the Higgs to two photons decay is very rare, the contribution of the Higgs can be seen as a narrow peak around 125 GeV because of the excellent reconstruction and identification efficiency of photons at the ATLAS experiment.

The analysis is translated to a RDataFrame workflow processing 1.7 GB of simulated events and data.

import ROOT
import os
# Enable multi-threading
# Create a ROOT dataframe for each dataset
path = "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets/2020-01-22"
df = {}
df["data"] = ROOT.RDataFrame("mini", (os.path.join(path, "GamGam/Data/data_{}.GamGam.root".format(x)) for x in ("A", "B", "C", "D")))
df["ggH"] = ROOT.RDataFrame("mini", os.path.join(path, "GamGam/MC/mc_343981.ggH125_gamgam.GamGam.root"))
df["VBF"] = ROOT.RDataFrame("mini", os.path.join(path, "GamGam/MC/mc_345041.VBFH125_gamgam.GamGam.root"))
processes = list(df.keys())
# Apply scale factors and MC weight for simulated events and a weight of 1 for the data
for p in ["ggH", "VBF"]:
df[p] = df[p].Define("weight",
"scaleFactor_PHOTON * scaleFactor_PhotonTRIGGER * scaleFactor_PILEUP * mcWeight");
df["data"] = df["data"].Define("weight", "1.0")
# Select the events for the analysis
for p in processes:
# Apply preselection cut on photon trigger
df[p] = df[p].Filter("trigP")
# Find two good muons with tight ID, pt > 25 GeV and not in the transition region between barrel and encap
df[p] = df[p].Define("goodphotons", "photon_isTightID && (photon_pt > 25000) && (abs(photon_eta) < 2.37) && ((abs(photon_eta) < 1.37) || (abs(photon_eta) > 1.52))")\
.Filter("Sum(goodphotons) == 2")
# Take only isolated photons
df[p] = df[p].Filter("Sum(photon_ptcone30[goodphotons] / photon_pt[goodphotons] < 0.065) == 2")\
.Filter("Sum(photon_etcone20[goodphotons] / photon_pt[goodphotons] < 0.065) == 2")
# Compile a function to compute the invariant mass of the diphoton system
"""
using namespace ROOT;
float ComputeInvariantMass(RVecF pt, RVecF eta, RVecF phi, RVecF e) {
ROOT::Math::PtEtaPhiEVector p1(pt[0], eta[0], phi[0], e[0]);
ROOT::Math::PtEtaPhiEVector p2(pt[1], eta[1], phi[1], e[1]);
return (p1 + p2).mass() / 1000.0;
}
""")
# Define a new column with the invariant mass and perform final event selection
hists = {}
for p in processes:
# Make four vectors and compute invariant mass
df[p] = df[p].Define("m_yy", "ComputeInvariantMass(photon_pt[goodphotons], photon_eta[goodphotons], photon_phi[goodphotons], photon_E[goodphotons])")
# Make additional kinematic cuts and select mass window
df[p] = df[p].Filter("photon_pt[goodphotons][0] / 1000.0 / m_yy > 0.35")\
.Filter("photon_pt[goodphotons][1] / 1000.0 / m_yy > 0.25")\
.Filter("m_yy > 105 && m_yy < 160")
# Book histogram of the invariant mass with this selection
hists[p] = df[p].Histo1D(
ROOT.RDF.TH1DModel(p, "Diphoton invariant mass; m_{#gamma#gamma} [GeV];Events", 30, 105, 160),
"m_yy", "weight")
# Run the event loop
# RunGraphs allows to run the event loops of the separate RDataFrame graphs
# concurrently. This results in an improved usage of the available resources
# if each separate RDataFrame can not utilize all available resources, e.g.,
# because not enough data is available.
ROOT.RDF.RunGraphs([hists[s] for s in ["ggH", "VBF", "data"]])
ggh = hists["ggH"].GetValue()
vbf = hists["VBF"].GetValue()
data = hists["data"].GetValue()
# Create the plot
# Set styles
# Create canvas with pads for main plot and data/MC ratio
c = ROOT.TCanvas("c", "", 700, 750)
upper_pad = ROOT.TPad("upper_pad", "", 0, 0.35, 1, 1)
lower_pad = ROOT.TPad("lower_pad", "", 0, 0, 1, 0.35)
for p in [upper_pad, lower_pad]:
p.SetTickx(False)
p.SetTicky(False)
# Fit signal + background model to data
fit = ROOT.TF1("fit", "([0]+[1]*x+[2]*x^2+[3]*x^3)+[4]*exp(-0.5*((x-[5])/[6])^2)", 105, 160)
data.Fit("fit", "0", "", 105, 160)
# Draw data
data.GetYaxis().SetLabelSize(0.045)
data.GetYaxis().SetTitleSize(0.05)
# Draw fit
fit.Draw("SAME")
# Draw background
bkg = ROOT.TF1("bkg", "([0]+[1]*x+[2]*x^2+[3]*x^3)", 105, 160)
for i in range(4):
bkg.Draw("SAME")
# Scale simulated events with luminosity * cross-section / sum of weights
# and merge to single Higgs signal
lumi = 10064.0
ggh.Scale(lumi * 0.102 / 55922617.6297)
vbf.Scale(lumi * 0.008518764 / 3441426.13711)
higgs = ggh.Clone()
higgs.Draw("HIST SAME")
# Draw ratio
ratiobkg = ROOT.TH1I("zero", "", 100, 105, 160)
ratiobkg.GetXaxis().SetLabelSize(0.08)
ratiobkg.GetXaxis().SetTitleSize(0.12)
ratiobkg.GetXaxis().SetTitleOffset(1.0)
ratiobkg.GetYaxis().SetLabelSize(0.08)
ratiobkg.GetYaxis().SetTitleSize(0.09)
ratiobkg.GetYaxis().SetTitle("Data - Bkg.")
ratiobkg.GetYaxis().CenterTitle()
ratiobkg.GetYaxis().SetTitleOffset(0.7)
ratiobkg.GetYaxis().SetNdivisions(503, False)
ratiobkg.GetYaxis().ChangeLabel(-1, -1, 0)
ratiobkg.GetXaxis().SetTitle("m_{#gamma#gamma} [GeV]")
ratiosig = ROOT.TH1F("ratiosig", "ratiosig", 5500, 105, 160)
ratiosig.Add(bkg, -1)
ratiodata = data.Clone()
ratiodata.Add(bkg, -1)
for i in range(1, data.GetNbinsX()):
ratiodata.Draw("E SAME")
# Add legend
legend = ROOT.TLegend(0.55, 0.55, 0.89, 0.85)
legend.AddEntry(data, "Data" ,"lep")
legend.AddEntry(bkg, "Background", "l")
legend.AddEntry(fit, "Signal + Bkg.", "l")
legend.AddEntry(higgs, "Signal", "l")
# Add ATLAS label
text = ROOT.TLatex()
text.DrawLatex(0.18, 0.84, "ATLAS")
text.DrawLatex(0.18 + 0.13, 0.84, "Open Data")
text.DrawLatex(0.18, 0.78, "#sqrt{s} = 13 TeV, 10 fb^{-1}")
# Save the plot
c.SaveAs("df104_HiggsToTwoPhotons.png")
print("Saved figure to df104_HiggsToTwoPhotons.png")
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
A struct which stores the parameters of a TH1D.
****************************************
Minimizer is Minuit2 / Migrad
Chi2 = 19.9699
NDf = 26
Edm = 2.09182e-08
NCalls = 161
p0 = 94325 +/- 72.0525
p1 = -1777.22 +/- 0.778155
p2 = 11.5606 +/- 0.00536059
p3 = -0.0256281 +/- 2.66824e-05
p4 = 119.1 (fixed)
p5 = 125 (fixed)
p6 = 2.39 (fixed)
Saved figure to df104_HiggsToTwoPhotons.png
Date
February 2020
Author
Stefan Wunsch (KIT, CERN)

Definition in file df104_HiggsToTwoPhotons.py.