Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
IntervalExamples.py File Reference

Detailed Description

View in nbviewer Open in SWAN
Example showing confidence intervals with four techniques.

An example that shows confidence intervals with four techniques. The model is a Normal Gaussian G(x|mu,sigma) with 100 samples of x. The answer is known analytically, so this is a good example to validate the RooStats tools.

  • expected interval is [-0.162917, 0.229075]
  • plc interval is [-0.162917, 0.229075]
  • fc interval is [-0.17 , 0.23] // stepsize is 0.01
  • bc interval is [-0.162918, 0.229076]
  • mcmc interval is [-0.166999, 0.230224]
[#0] WARNING:InputArguments -- The parameter 'sigma' with range [-inf, inf] of the RooGaussian 'normal' exceeds the safe range of (0, inf). Advise to limit its range.
RooDataSet::normalData[x] = 100 entries
[#1] INFO:InputArguments -- The deprecated RooFit::CloneData(1) option passed to createNLL() is ignored.
[#1] INFO:Fitting -- RooAbsPdf::fitTo(normal_over_normal_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx2
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoGLobalFit - find MLE
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_normal_over_normal_Int[x]_normalData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoMinimizeNLL - using Minuit2 / with strategy 1
[#1] INFO:Minimization --
RooFitResult: minimized FCN value: 144.292, estimated distance to minimum: 1.7357e-15
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
mu 3.3079e-02 +/- 9.98e-02
=== Using the following for Example G(x|mu,1) ===
Observables: RooArgSet:: = (x)
Parameters of Interest: RooArgSet:: = (mu)
PDF: RooGaussian::normal[ x=x mean=mu sigma=sigma ] = 0.999453
FeldmanCousins: ntoys per point: adaptive
FeldmanCousins: nEvents per toy will not fluctuate, will always be 100
FeldmanCousins: Model has no nuisance parameters
FeldmanCousins: # points to test = 100
NeymanConstruction: Prog: 1/100 total MC = 78 this test stat = 52.3345
mu=-0.99 [-inf, 1.44394] in interval = 0
NeymanConstruction: Prog: 2/100 total MC = 78 this test stat = 50.3084
mu=-0.97 [-inf, 1.79333] in interval = 0
NeymanConstruction: Prog: 3/100 total MC = 78 this test stat = 48.3222
mu=-0.95 [-inf, 2.15157] in interval = 0
NeymanConstruction: Prog: 4/100 total MC = 78 this test stat = 46.3758
mu=-0.93 [-inf, 1.35751] in interval = 0
NeymanConstruction: Prog: 5/100 total MC = 78 this test stat = 44.4699
mu=-0.91 [-inf, 3.34994] in interval = 0
NeymanConstruction: Prog: 6/100 total MC = 78 this test stat = 42.6037
mu=-0.89 [-inf, 2.51372] in interval = 0
NeymanConstruction: Prog: 7/100 total MC = 78 this test stat = 40.7776
mu=-0.87 [-inf, 2.23515] in interval = 0
NeymanConstruction: Prog: 8/100 total MC = 78 this test stat = 38.9914
mu=-0.85 [-inf, 1.58856] in interval = 0
NeymanConstruction: Prog: 9/100 total MC = 78 this test stat = 37.2453
mu=-0.83 [-inf, 1.815] in interval = 0
NeymanConstruction: Prog: 10/100 total MC = 78 this test stat = 35.5391
mu=-0.81 [-inf, 2.60213] in interval = 0
NeymanConstruction: Prog: 11/100 total MC = 78 this test stat = 33.873
mu=-0.79 [-inf, 1.83579] in interval = 0
NeymanConstruction: Prog: 12/100 total MC = 78 this test stat = 32.2468
mu=-0.77 [-inf, 1.80677] in interval = 0
NeymanConstruction: Prog: 13/100 total MC = 78 this test stat = 30.6606
mu=-0.75 [-inf, 2.46798] in interval = 0
NeymanConstruction: Prog: 14/100 total MC = 78 this test stat = 29.1145
mu=-0.73 [-inf, 1.76469] in interval = 0
NeymanConstruction: Prog: 15/100 total MC = 78 this test stat = 27.6083
mu=-0.71 [-inf, 2.10923] in interval = 0
NeymanConstruction: Prog: 16/100 total MC = 78 this test stat = 26.1422
mu=-0.69 [-inf, 1.96364] in interval = 0
NeymanConstruction: Prog: 17/100 total MC = 78 this test stat = 24.716
mu=-0.67 [-inf, 2.46737] in interval = 0
NeymanConstruction: Prog: 18/100 total MC = 78 this test stat = 23.3298
mu=-0.65 [-inf, 2.22208] in interval = 0
NeymanConstruction: Prog: 19/100 total MC = 78 this test stat = 21.9837
mu=-0.63 [-inf, 1.92004] in interval = 0
NeymanConstruction: Prog: 20/100 total MC = 78 this test stat = 20.6774
mu=-0.61 [-inf, 2.09449] in interval = 0
NeymanConstruction: Prog: 21/100 total MC = 78 this test stat = 19.4114
mu=-0.59 [-inf, 2.82549] in interval = 0
NeymanConstruction: Prog: 22/100 total MC = 78 this test stat = 18.1852
mu=-0.57 [-inf, 2.44483] in interval = 0
NeymanConstruction: Prog: 23/100 total MC = 78 this test stat = 16.9991
mu=-0.55 [-inf, 1.47648] in interval = 0
NeymanConstruction: Prog: 24/100 total MC = 78 this test stat = 15.8529
mu=-0.53 [-inf, 1.64253] in interval = 0
NeymanConstruction: Prog: 25/100 total MC = 78 this test stat = 14.7467
mu=-0.51 [-inf, 3.23375] in interval = 0
NeymanConstruction: Prog: 26/100 total MC = 78 this test stat = 13.6806
mu=-0.49 [-inf, 1.36352] in interval = 0
NeymanConstruction: Prog: 27/100 total MC = 78 this test stat = 12.6544
mu=-0.47 [-inf, 2.24046] in interval = 0
NeymanConstruction: Prog: 28/100 total MC = 78 this test stat = 11.6683
mu=-0.45 [-inf, 1.99249] in interval = 0
NeymanConstruction: Prog: 29/100 total MC = 78 this test stat = 10.7221
mu=-0.43 [-inf, 2.54633] in interval = 0
NeymanConstruction: Prog: 30/100 total MC = 78 this test stat = 9.81595
mu=-0.41 [-inf, 2.19145] in interval = 0
NeymanConstruction: Prog: 31/100 total MC = 78 this test stat = 8.94979
mu=-0.39 [-inf, 2.25083] in interval = 0
NeymanConstruction: Prog: 32/100 total MC = 78 this test stat = 8.12363
mu=-0.37 [-inf, 2.63436] in interval = 0
NeymanConstruction: Prog: 33/100 total MC = 78 this test stat = 7.33748
mu=-0.35 [-inf, 1.7752] in interval = 0
NeymanConstruction: Prog: 34/100 total MC = 78 this test stat = 6.59132
mu=-0.33 [-inf, 2.63173] in interval = 0
NeymanConstruction: Prog: 35/100 total MC = 78 this test stat = 5.88516
mu=-0.31 [-inf, 2.2561] in interval = 0
NeymanConstruction: Prog: 36/100 total MC = 78 this test stat = 5.219
mu=-0.29 [-inf, 2.0388] in interval = 0
NeymanConstruction: Prog: 37/100 total MC = 234 this test stat = 4.59284
mu=-0.27 [-inf, 1.92574] in interval = 0
NeymanConstruction: Prog: 38/100 total MC = 78 this test stat = 4.00668
mu=-0.25 [-inf, 2.51905] in interval = 0
NeymanConstruction: Prog: 39/100 total MC = 234 this test stat = 3.46053
mu=-0.23 [-inf, 2.20004] in interval = 0
NeymanConstruction: Prog: 40/100 total MC = 234 this test stat = 2.95437
mu=-0.21 [-inf, 1.49924] in interval = 0
NeymanConstruction: Prog: 41/100 total MC = 234 this test stat = 2.48821
mu=-0.19 [-inf, 1.88454] in interval = 0
NeymanConstruction: Prog: 42/100 total MC = 78 this test stat = 2.06205
mu=-0.17 [-inf, 2.92073] in interval = 1
NeymanConstruction: Prog: 43/100 total MC = 234 this test stat = 1.6759
mu=-0.15 [-inf, 2.19199] in interval = 1
NeymanConstruction: Prog: 44/100 total MC = 78 this test stat = 1.32974
mu=-0.13 [-inf, 1.94832] in interval = 1
NeymanConstruction: Prog: 45/100 total MC = 78 this test stat = 1.02358
mu=-0.11 [-inf, 2.16863] in interval = 1
NeymanConstruction: Prog: 46/100 total MC = 78 this test stat = 0.757266
mu=-0.09 [-inf, 1.46141] in interval = 1
NeymanConstruction: Prog: 47/100 total MC = 78 this test stat = 0.531219
mu=-0.07 [-inf, 4.11006] in interval = 1
NeymanConstruction: Prog: 48/100 total MC = 78 this test stat = 0.345097
mu=-0.05 [-inf, 2.11338] in interval = 1
NeymanConstruction: Prog: 49/100 total MC = 78 this test stat = 0.198947
mu=-0.03 [-inf, 2.38127] in interval = 1
NeymanConstruction: Prog: 50/100 total MC = 78 this test stat = 0.09279
mu=-0.01 [-inf, 3.0189] in interval = 1
NeymanConstruction: Prog: 51/100 total MC = 78 this test stat = 0.026632
mu=0.01 [-inf, 2.23423] in interval = 1
NeymanConstruction: Prog: 52/100 total MC = 78 this test stat = 0.000474009
mu=0.03 [-inf, 2.54313] in interval = 1
NeymanConstruction: Prog: 53/100 total MC = 78 this test stat = 0.014316
mu=0.05 [-inf, 1.52484] in interval = 1
NeymanConstruction: Prog: 54/100 total MC = 78 this test stat = 0.0681571
mu=0.07 [-inf, 2.72021] in interval = 1
NeymanConstruction: Prog: 55/100 total MC = 78 this test stat = 0.161992
mu=0.09 [-inf, 3.26474] in interval = 1
NeymanConstruction: Prog: 56/100 total MC = 78 this test stat = 0.2958
mu=0.11 [-inf, 2.81134] in interval = 1
NeymanConstruction: Prog: 57/100 total MC = 78 this test stat = 0.469534
mu=0.13 [-inf, 2.59127] in interval = 1
NeymanConstruction: Prog: 58/100 total MC = 78 this test stat = 0.683526
mu=0.15 [-inf, 2.60194] in interval = 1
NeymanConstruction: Prog: 59/100 total MC = 78 this test stat = 0.937368
mu=0.17 [-inf, 1.94974] in interval = 1
NeymanConstruction: Prog: 60/100 total MC = 78 this test stat = 1.23121
mu=0.19 [-inf, 1.73838] in interval = 1
NeymanConstruction: Prog: 61/100 total MC = 702 this test stat = 1.56505
mu=0.21 [-inf, 1.73023] in interval = 1
NeymanConstruction: Prog: 62/100 total MC = 78 this test stat = 1.93888
mu=0.23 [-inf, 3.06401] in interval = 1
NeymanConstruction: Prog: 63/100 total MC = 234 this test stat = 2.35273
mu=0.25 [-inf, 1.63166] in interval = 0
NeymanConstruction: Prog: 64/100 total MC = 234 this test stat = 2.80658
mu=0.27 [-inf, 1.83441] in interval = 0
NeymanConstruction: Prog: 65/100 total MC = 234 this test stat = 3.30042
mu=0.29 [-inf, 2.06725] in interval = 0
NeymanConstruction: Prog: 66/100 total MC = 78 this test stat = 3.83426
mu=0.31 [-inf, 2.10484] in interval = 0
NeymanConstruction: Prog: 67/100 total MC = 78 this test stat = 4.4081
mu=0.33 [-inf, 2.1714] in interval = 0
NeymanConstruction: Prog: 68/100 total MC = 78 this test stat = 5.02195
mu=0.35 [-inf, 2.77418] in interval = 0
NeymanConstruction: Prog: 69/100 total MC = 78 this test stat = 5.67579
mu=0.37 [-inf, 2.39797] in interval = 0
NeymanConstruction: Prog: 70/100 total MC = 78 this test stat = 6.36963
mu=0.39 [-inf, 1.83585] in interval = 0
NeymanConstruction: Prog: 71/100 total MC = 78 this test stat = 7.10347
mu=0.41 [-inf, 1.92776] in interval = 0
NeymanConstruction: Prog: 72/100 total MC = 78 this test stat = 7.87731
mu=0.43 [-inf, 1.62512] in interval = 0
NeymanConstruction: Prog: 73/100 total MC = 78 this test stat = 8.69116
mu=0.45 [-inf, 1.5721] in interval = 0
NeymanConstruction: Prog: 74/100 total MC = 78 this test stat = 9.545
mu=0.47 [-inf, 1.9811] in interval = 0
NeymanConstruction: Prog: 75/100 total MC = 78 this test stat = 10.4388
mu=0.49 [-inf, 3.71619] in interval = 0
NeymanConstruction: Prog: 76/100 total MC = 78 this test stat = 11.3727
mu=0.51 [-inf, 2.09734] in interval = 0
NeymanConstruction: Prog: 77/100 total MC = 78 this test stat = 12.3465
mu=0.53 [-inf, 1.61789] in interval = 0
NeymanConstruction: Prog: 78/100 total MC = 78 this test stat = 13.3604
mu=0.55 [-inf, 1.75937] in interval = 0
NeymanConstruction: Prog: 79/100 total MC = 78 this test stat = 14.4142
mu=0.57 [-inf, 2.16051] in interval = 0
NeymanConstruction: Prog: 80/100 total MC = 78 this test stat = 15.5081
mu=0.59 [-inf, 2.48971] in interval = 0
NeymanConstruction: Prog: 81/100 total MC = 78 this test stat = 16.6419
mu=0.61 [-inf, 2.15114] in interval = 0
NeymanConstruction: Prog: 82/100 total MC = 78 this test stat = 17.8157
mu=0.63 [-inf, 2.63832] in interval = 0
NeymanConstruction: Prog: 83/100 total MC = 78 this test stat = 19.0296
mu=0.65 [-inf, 2.12006] in interval = 0
NeymanConstruction: Prog: 84/100 total MC = 78 this test stat = 20.2834
mu=0.67 [-inf, 1.70414] in interval = 0
NeymanConstruction: Prog: 85/100 total MC = 78 this test stat = 21.5773
mu=0.69 [-inf, 2.54958] in interval = 0
NeymanConstruction: Prog: 86/100 total MC = 78 this test stat = 22.9111
mu=0.71 [-inf, 2.27992] in interval = 0
NeymanConstruction: Prog: 87/100 total MC = 78 this test stat = 24.2849
mu=0.73 [-inf, 2.99068] in interval = 0
NeymanConstruction: Prog: 88/100 total MC = 78 this test stat = 25.6988
mu=0.75 [-inf, 1.60655] in interval = 0
NeymanConstruction: Prog: 89/100 total MC = 78 this test stat = 27.1526
mu=0.77 [-inf, 1.61728] in interval = 0
NeymanConstruction: Prog: 90/100 total MC = 78 this test stat = 28.6465
mu=0.79 [-inf, 1.92571] in interval = 0
NeymanConstruction: Prog: 91/100 total MC = 78 this test stat = 30.1803
mu=0.81 [-inf, 1.69221] in interval = 0
NeymanConstruction: Prog: 92/100 total MC = 78 this test stat = 31.7542
mu=0.83 [-inf, 3.26227] in interval = 0
NeymanConstruction: Prog: 93/100 total MC = 78 this test stat = 33.368
mu=0.85 [-inf, 1.75583] in interval = 0
NeymanConstruction: Prog: 94/100 total MC = 78 this test stat = 35.0218
mu=0.87 [-inf, 2.54103] in interval = 0
NeymanConstruction: Prog: 95/100 total MC = 78 this test stat = 36.7157
mu=0.89 [-inf, 2.267] in interval = 0
NeymanConstruction: Prog: 96/100 total MC = 78 this test stat = 38.4495
mu=0.91 [-inf, 2.31167] in interval = 0
NeymanConstruction: Prog: 97/100 total MC = 78 this test stat = 40.2234
mu=0.93 [-inf, 2.24794] in interval = 0
NeymanConstruction: Prog: 98/100 total MC = 78 this test stat = 42.0372
mu=0.95 [-inf, 1.29779] in interval = 0
NeymanConstruction: Prog: 99/100 total MC = 78 this test stat = 43.891
mu=0.97 [-inf, 2.00008] in interval = 0
NeymanConstruction: Prog: 100/100 total MC = 78 this test stat = 45.7849
mu=0.99 [-inf, 1.56062] in interval = 0
[#1] INFO:Eval -- 21 points in interval
[#1] INFO:Fitting -- RooAbsPdf::fitTo(normal_over_normal_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Eval -- BayesianCalculator::GetPosteriorFunction : nll value 190.077 poi value = 0.99
[#1] INFO:Eval -- BayesianCalculator::GetPosteriorFunction : minimum of NLL vs POI for POI = 0.033079 min NLL = 144.292
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (prior)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: ()
[#1] INFO:Fitting -- RooAbsPdf::fitTo(product_normal_prior) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Eval -- BayesianCalculator: Compute interval using RooFit: posteriorPdf + createCdf + RooBrentRootFinder
[#1] INFO:Eval -- BayesianCalculator::GetInterval - found a valid interval : [-0.95 , 0.95 ]
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (prior)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: ()
[#1] INFO:Fitting -- RooAbsPdf::fitTo(product_normal_prior) fixing normalization set for coefficient determination to observables in data
Metropolis-Hastings progress: ....................................................................................................
[#1] INFO:Eval -- Proposal acceptance rate: 16.013%
[#1] INFO:Eval -- Number of steps in chain: 16013
.
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu]) Creating instance of MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_normal_over_normal_Int[x]_normalData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu]) determining minimum likelihood for current configurations w.r.t all observable
[#0] ERROR:InputArguments -- RooArgSet::checkForDup: ERROR argument with name mu is already in this set
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu]) minimum found at (mu=0.033079)
..........................................................................................................................................................................................................Real time 0:00:04, CP time 4.930
expected interval is [-0.1629174085659928, 0.22907538834201802]
plc interval is [-0.16291740856540754, 0.22907538834167748]
fc interval is [-0.16999999999999993, 0.22999999999999998]
bc interval is [-0.95, 0.9500000000000002]
mc interval is [-0.1669991221278906, 0.23022447898983955]
is mu=0 in the interval? True
import ROOT
# Time this macro
t = ROOT.TStopwatch()
t.Start()
# set RooFit random seed for reproducible results
ROOT.RooRandom.randomGenerator().SetSeed(3001)
# make a simple model via the workspace factory
wspace = ROOT.RooWorkspace()
wspace.factory("Gaussian::normal(x[-10,10],mu[-1,1],sigma[1])")
wspace.defineSet("poi", "mu")
wspace.defineSet("obs", "x")
# specify components of model for statistical tools
modelConfig = ROOT.RooStats.ModelConfig("Example G(x|mu,1)")
modelConfig.SetWorkspace(wspace)
modelConfig.SetPdf(wspace["normal"])
modelConfig.SetParametersOfInterest(wspace.set("poi"))
modelConfig.SetObservables(wspace.set("obs"))
# create a toy dataset
data = wspace["normal"].generate(wspace.set("obs"), 100)
data.Print()
# for convenience later on
x = wspace["x"]
mu = wspace["mu"]
# set confidence level
confidenceLevel = 0.95
# example use profile likelihood calculator
plc = ROOT.RooStats.ProfileLikelihoodCalculator(data, modelConfig)
plc.SetConfidenceLevel(confidenceLevel)
plInt = plc.GetInterval()
# example use of Feldman-Cousins
fc = ROOT.RooStats.FeldmanCousins(data, modelConfig)
fc.SetConfidenceLevel(confidenceLevel)
fc.SetNBins(100) # number of points to test per parameter
fc.UseAdaptiveSampling(True) # make it go faster
# Here, we consider only ensembles with 100 events
# The PDF could be extended and this could be removed
fc.FluctuateNumDataEntries(False)
interval = fc.GetInterval()
# example use of BayesianCalculator
# now we also need to specify a prior in the ModelConfig
wspace.factory("Uniform::prior(mu)")
modelConfig.SetPriorPdf(wspace["prior"])
# example usage of BayesianCalculator
bc = ROOT.RooStats.BayesianCalculator(data, modelConfig)
bc.SetConfidenceLevel(confidenceLevel)
bcInt = bc.GetInterval()
# example use of MCMCInterval
mc = ROOT.RooStats.MCMCCalculator(data, modelConfig)
mc.SetConfidenceLevel(confidenceLevel)
# special options
mc.SetNumBins(200) # bins used internally for representing posterior
mc.SetNumBurnInSteps(500) # first N steps to be ignored as burn-in
mc.SetNumIters(100000) # how long to run chain
mc.SetLeftSideTailFraction(0.5) # for central interval
mcInt = mc.GetInterval()
# for this example we know the expected intervals
expectedLL = data.mean(x) + ROOT.Math.normal_quantile((1 - confidenceLevel) / 2, 1) / ROOT.sqrt(data.numEntries())
expectedUL = data.mean(x) + ROOT.Math.normal_quantile_c((1 - confidenceLevel) / 2, 1) / ROOT.sqrt(data.numEntries())
# Use the intervals
print("expected interval is [{}, {}]".format(expectedLL, expectedUL))
print("plc interval is [{}, {}]".format(plInt.LowerLimit(mu), plInt.UpperLimit(mu)))
print("fc interval is [{}, {}]".format(interval.LowerLimit(mu), interval.UpperLimit(mu)))
print("bc interval is [{}, {}]".format(bcInt.LowerLimit(), bcInt.UpperLimit()))
print("mc interval is [{}, {}]".format(mcInt.LowerLimit(mu), mcInt.UpperLimit(mu)))
mu.setVal(0)
print("is mu=0 in the interval? ", plInt.IsInInterval({mu}))
# make a reasonable style
ROOT.gStyle.SetCanvasColor(0)
ROOT.gStyle.SetCanvasBorderMode(0)
ROOT.gStyle.SetPadBorderMode(0)
ROOT.gStyle.SetPadColor(0)
ROOT.gStyle.SetCanvasColor(0)
ROOT.gStyle.SetTitleFillColor(0)
ROOT.gStyle.SetFillColor(0)
ROOT.gStyle.SetFrameFillColor(0)
ROOT.gStyle.SetStatColor(0)
# some plots
canvas = ROOT.TCanvas("canvas")
canvas.Divide(2, 2)
# plot the data
canvas.cd(1)
frame = x.frame()
data.plotOn(frame)
data.statOn(frame)
frame.Draw()
# plot the profile likelihood
canvas.cd(2)
plot = ROOT.RooStats.LikelihoodIntervalPlot(plInt)
plot.Draw()
# plot the MCMC interval
canvas.cd(3)
mcPlot = ROOT.RooStats.MCMCIntervalPlot(mcInt)
mcPlot.SetLineColor(ROOT.kGreen)
mcPlot.SetLineWidth(2)
mcPlot.Draw()
canvas.cd(4)
bcPlot = bc.GetPosteriorPlot()
bcPlot.Draw()
canvas.Update()
t.Stop()
t.Print()
canvas.SaveAs("IntervalExamples.png")
# TODO: The BayesianCalculator and MCMCCalculator have to be destructed first.
# Otherwise, we can get segmentation faults depending on the destruction order,
# which is random in Python. Probably the issue is that some object has a
# non-owning pointer to another object, which it uses in its destructor. This
# should be fixed either in the design of RooStats in C++, or with
# phythonizations.
del bc
del mc
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
Date
July 2022
Authors
Artem Busorgin, Kyle Cranmer (C++ version)

Definition in file IntervalExamples.py.