60 fInterpolateLowerLimit(true),
61 fInterpolateUpperLimit(true),
62 fFittedLowerLimit(false),
63 fFittedUpperLimit(false),
64 fInterpolOption(kLinear),
67 fCLsCleanupThreshold(0.005)
81 fUseCLs(other.fUseCLs),
82 fIsTwoSided(other.fIsTwoSided),
83 fInterpolateLowerLimit(other.fInterpolateLowerLimit),
84 fInterpolateUpperLimit(other.fInterpolateUpperLimit),
85 fFittedLowerLimit(other.fFittedLowerLimit),
86 fFittedUpperLimit(other.fFittedUpperLimit),
87 fInterpolOption(other.fInterpolOption),
88 fLowerLimitError(other.fLowerLimitError),
89 fUpperLimitError(other.fUpperLimitError),
90 fCLsCleanupThreshold(other.fCLsCleanupThreshold),
91 fXValues(other.fXValues)
97 for (
int i = 0; i < nOther; ++i)
133 for (
int i=0; i < nOther; ++i) {
156 fInterpolateLowerLimit(true),
157 fInterpolateUpperLimit(true),
158 fFittedLowerLimit(false),
159 fFittedUpperLimit(false),
160 fInterpolOption(kLinear),
161 fLowerLimitError(-1),
162 fUpperLimitError(-1),
163 fCLsCleanupThreshold(0.005)
213 bool resultIsAsymptotic(
false);
217 if ( !
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
218 resultIsAsymptotic =
true;
222 int nPointsRemoved(0);
224 double CLsobsprev(1.0);
227 const double x = *itr;
237 coutE(
Eval) <<
"HypoTestInverterResult::ExclusionCleanup - invalid size of sampling distribution" << std::endl;
244 if (resultIsAsymptotic) {
246 double dsig = 2.*maxSigma / (values.size() -1) ;
259 double * z =
const_cast<double *
>(&values[0] );
265 const double CLsobs =
CLs(i);
269 bool removeThisPoint(
false);
272 if (resultIsAsymptotic && i>=1 && CLsobs>CLsobsprev) {
273 removeThisPoint =
true;
274 }
else if (CLsobs >= 0.) {
279 removeThisPoint |= i>=1 && CLsobs >= 0.9999;
285 removeThisPoint |= CLsobs < 0.;
288 if (removeThisPoint) {
304 return nPointsRemoved;
322 if (nOther == 0)
return true;
330 coutI(
Eval) <<
"HypoTestInverterResult::Add - merging result from " << otherResult.
GetName()
331 <<
" in " <<
GetName() << std::endl;
336 if (addExpPValues || mergeExpPValues)
337 coutI(
Eval) <<
"HypoTestInverterResult::Add - merging also the expected p-values from pseudo-data" << std::endl;
344 for (
int i = 0; i < nOther; ++i)
351 for (
int i = 0; i < nOther; ++i) {
352 double otherVal = otherResult.
fXValues[i];
354 if (otherHTR ==
nullptr)
continue;
355 bool sameXFound =
false;
356 for (
int j = 0; j < nThis; ++j) {
363 thisHTR->
Append(otherHTR);
365 if (mergeExpPValues) {
370 if (thisNToys != otherNToys )
371 coutW(
Eval) <<
"HypoTestInverterResult::Add expected p values have been generated with different toys " << thisNToys <<
" , " << otherNToys << std::endl;
390 coutI(
Eval) <<
"HypoTestInverterResult::Add - new number of points is " <<
fXValues.size()
393 coutI(
Eval) <<
"HypoTestInverterResult::Add - new toys/point is "
415 if (!
r)
return false;
452 return result->CLsplusb();
467 return result->CLsError();
469 return result->CLsplusbError();
494 return result->CLsplusb();
518 return result->CLbError();
530 return result->CLsplusbError();
542 return result->CLsError();
565 const double tol = 1.E-12;
584 std::cout <<
"using graph for search " << lowSearch <<
" min " << axmin <<
" max " << axmax << std::endl;
589 const double *
y =
graph.GetY();
592 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult::GetGraphX - need at least 2 points for interpolation (n=" <<
n <<
")\n";
593 return (
n>0) ?
y[0] : 0;
610 return (lowSearch) ? varmax : varmin;
613 return (lowSearch) ? varmin : varmax;
620 if (axmin >= axmax ) {
623 std::cout <<
"No range given - check if extrapolation is needed " << std::endl;
629 double yfirst =
graph.GetY()[0];
630 double ylast =
graph.GetY()[
n-1];
636 if ( (
ymax < y0 && !lowSearch) || ( yfirst > y0 && lowSearch) ) {
640 if ( (
ymax < y0 && lowSearch) || ( ylast > y0 && !lowSearch) ) {
645 auto func = [&](
double x) {
655 <<
" , " <<
graph.Eval(
xmax) <<
" target " << y0 << std::endl;
658 bool ret = brf.
Solve(100, 1.E-16, 1.E-6);
660 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult - interpolation failed for interval [" <<
xmin <<
"," <<
xmax
662 <<
" target=" << y0 <<
" return inf" << std::endl
663 <<
"One may try to clean up invalid points using HypoTestInverterResult::ExclusionCleanup()." << std::endl;
666 double limit = brf.
Root();
669 if (lowSearch) std::cout <<
"lower limit search : ";
670 else std::cout <<
"Upper limit search : ";
671 std::cout <<
"interpolation done between " <<
xmin <<
" and " <<
xmax
672 <<
"\n Found limit using RootFinder is " << limit << std::endl;
674 TString fname =
"graph_upper.root";
675 if (lowSearch) fname =
"graph_lower.root";
677 std::unique_ptr<TFile> file{
TFile::Open(fname,
"RECREATE")};
678 graph.Write(
"graph");
684 if (axmin >= axmax) {
687 std::cout <<
"do new interpolation dividing from " <<
index <<
" and " <<
y[
index] << std::endl;
690 if (lowSearch &&
index >= 1 && (
y[0] - y0) * (
y[
index]- y0) < 0) {
694 else if (!lowSearch &&
index <
n-2 && (
y[
n-1] - y0) * (
y[
index+1]- y0) < 0) {
723 double val = (lowSearch) ?
xmin :
xmax;
724 coutW(
Eval) <<
"HypoTestInverterResult::FindInterpolatedLimit"
725 <<
" - not enough points to get the inverted interval - return "
734 std::vector<unsigned int>
index(
n );
738 for (
int i = 0; i <
n; ++i)
750 double * itrmax = std::max_element(
graph.GetY() ,
graph.GetY() +
n);
751 double ymax = *itrmax;
752 int iymax = itrmax -
graph.GetY();
753 double xwithymax =
graph.GetX()[iymax];
756 std::cout <<
" max of y " << iymax <<
" " << xwithymax <<
" " <<
ymax <<
" target is " <<
target << std::endl;
788 if (iymax <= (
n-1)/2 ) {
799 std::cout <<
" found xmin, xmax = " <<
xmin <<
" " <<
xmax <<
" for search " << lowSearch << std::endl;
810 if (upI < 1)
return xmin;
816 if (lowI >=
n-1)
return xmax;
824 std::cout <<
"finding " << lowSearch <<
" limit between " <<
xmin <<
" " <<
xmax << endl;
834 TString limitType = (lowSearch) ?
"lower" :
"upper";
835 ooccoutD(
this,
Eval) <<
"HypoTestInverterResult::FindInterpolateLimit "
836 <<
"the computed " << limitType <<
" limit is " << limit <<
" +/- " << error << std::endl;
839 std::cout <<
"Found limit is " << limit <<
" +/- " << error << std::endl;
887 int closestIndex = -1;
889 double smallestError = 2;
890 double bestValue = 2;
899 if ( dist < bestValue) {
904 if (bestIndex >=0)
return bestIndex;
912 std::vector<unsigned int> indx(
n);
914 std::vector<double> xsorted(
n);
915 for (
int i = 0; i <
n; ++i) xsorted[i] =
fXValues[indx[i] ];
919 std::cout <<
"finding closest point to " << xtarget <<
" is " << index1 <<
" " << indx[index1] << std::endl;
923 if (index1 < 0)
return indx[0];
924 if (index1 >=
n-1)
return indx[
n-1];
925 int index2 = index1 +1;
976 coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimateError"
977 <<
"Empty result \n";
982 coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimateError"
983 <<
" only points - return its error\n";
993 std::cout <<
"calculate estimate error " <<
type <<
" between " <<
xmin <<
" and " <<
xmax << std::endl;
998 std::vector<unsigned int> indx(
fXValues.size());
1015 if (
graph.GetN() < 2) {
1016 if (
np >= 2)
coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimatedError - no valid points - cannot estimate the " <<
type <<
" limit error " << std::endl;
1027 TF1 fct(
"fct",
"exp([0] * (x - [2] ) + [1] * (x-[2])**2)", minX, maxX);
1028 double scale = maxX-minX;
1047 std::cout <<
"fitting for limit " <<
type <<
"between " << minX <<
" , " << maxX <<
" points considered " <<
graph.GetN() << std::endl;
1048 int fitstat =
graph.Fit(&fct,
" EX0");
1049 graph.SetMarkerStyle(20);
1055 int fitstat =
graph.Fit(&fct,
"Q EX0");
1059 double theError = 0;
1068 coutW(
Eval) <<
"HypoTestInverterResult::CalculateEstimatedError - cannot estimate the " <<
type <<
" limit error " << std::endl;
1111 if (!firstResult)
return nullptr;
1120 if (!
result)
return nullptr;
1121 return !
result->GetBackGroundIsAlt() ?
result->GetAltDistribution() :
result->GetNullDistribution();
1129 if (index < 0 || index >=
ArraySize() )
return nullptr;
1135 static bool useFirstB =
false;
1137 int bIndex = (useFirstB) ? 0 :
index;
1144 if (bDistribution && sbDistribution) {
1154 std::vector<double> values(bDistribution->
GetSize());
1155 for (
int i = 0; i < bDistribution->
GetSize(); ++i) {
1167 const double dsig = 2* smax/ (npoints-1) ;
1168 std::vector<double> values(npoints);
1169 for (
int i = 0; i < npoints; ++i) {
1170 double nsig = -smax + dsig*i;
1172 if (pval < 0) {
return nullptr;}
1175 return new SamplingDistribution(
"Asymptotic expected values",
"Asymptotic expected values",values);
1185 coutE(
Eval) <<
"HypoTestInverterResult::GetLimitDistribution"
1186 <<
" not enough points - return 0 " << std::endl;
1190 ooccoutD(
this,
Eval) <<
"HypoTestInverterResult - computing limit distribution...." << std::endl;
1195 std::vector<SamplingDistribution*> distVec( npoints );
1197 for (
unsigned int i = 0; i < distVec.size(); ++i) {
1202 distVec[i]->InverseCDF(0);
1203 sum += distVec[i]->GetSize();
1209 ooccoutW(
this,
InputArguments) <<
"HypoTestInverterResult - set a minimum size of 10 for limit distribution" << std::endl;
1217 std::vector< std::vector<double> > quantVec(npoints );
1218 for (
int i = 0; i < npoints; ++i) {
1220 if (!distVec[i])
continue;
1223 std::vector<double> pvalues = distVec[i]->GetSamplingDistribution();
1224 delete distVec[i]; distVec[i] =
nullptr;
1225 std::sort(pvalues.begin(), pvalues.end());
1230 quantVec[i] = std::vector<double>(
size);
1231 for (
int ibin = 0; ibin <
size; ++ibin) {
1233 p[0] = std::min( (ibin+1) * 1./
double(
size), 1.0);
1236 (quantVec[i])[ibin] =
q[0];
1242 std::vector<unsigned int>
index( npoints );
1249 std::vector<double> limits(
size);
1251 for (
int j = 0; j <
size; ++j ) {
1254 for (
int k = 0; k < npoints ; ++k) {
1255 if (!quantVec[
index[k]].empty() )
1316 if (nEntries <= 0)
return (lower) ? 1 : 0;
1319 assert(
r !=
nullptr);
1320 if (!
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
1324 if (!limitDist)
return 0;
1326 if (values.size() <= 1)
return 0;
1343 if (
option.Contains(
"P")) {
1348 std::vector<unsigned int>
index(nEntries);
1351 for (
int j=0; j<nEntries; ++j) {
1355 ooccoutI(
this,
Eval) <<
"HypoTestInverterResult - cannot compute expected p value distribution for point, x = "
1356 <<
GetXValue(i) <<
" skip it " << std::endl;
1360 double *
x =
const_cast<double *
>(&values[0]);
1366 ooccoutE(
this,
Eval) <<
"HypoTestInverterResult - cannot compute limits , not enough points, n = " <<
g.GetN() << std::endl;
1377 if (!limitDist)
return 0;
1379 double *
x =
const_cast<double *
>(&values[0]);
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char mode
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Class for finding the root of a one dimensional function using the Brent algorithm.
bool SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup) override
Sets the function for the rest of the algorithms.
bool Solve(int maxIter=100, double absTol=1E-8, double relTol=1E-10) override
Returns the X value corresponding to the function value fy for (xmin<x<xmax).
double Root() const override
Returns root value.
void SetNpx(int npx)
Set the number of point used to bracket root using a grid.
Functor1D class for one-dimensional functions.
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
RooAbsArg * first() const
virtual bool addOwned(RooAbsArg &var, bool silent=false)
Add an argument and transfer the ownership to the collection.
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
Variable that can be changed from the outside.
TObject * clone(const char *newname) const override
static double GetExpectedPValues(double pnull, double palt, double nsigma, bool usecls, bool oneSided=true)
function given the null and the alt p value - return the expected one given the N - sigma value
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
bool fInterpolateUpperLimit
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results
double LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0.0)
interpolate to find a limit value Use a linear or a spline interpolation depending on the interpolati...
double UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rough error on the lower limit.
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
double fCLsCleanupThreshold
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
InterpolOption_t fInterpolOption
interpolation option (linear or spline)
int ArraySize() const
number of entries in the results array
bool fInterpolateLowerLimit
std::vector< double > fXValues
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
double CLsError(int index) const
return the observed CLb value for the i-th entry
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
return the X value of the given graph for the target value y0 the graph is evaluated using linear int...
double CLbError(int index) const
return the observed CLb value for the i-th entry
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
HypoTestInverterResult(const char *name=nullptr)
default constructor
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
double UpperLimit() override
return the interval upper limit
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
TList fExpPValues
list of expected sampling distribution for each point
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
bool fIsTwoSided
two sided scan (look for lower/upper limit)
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0.0)
Return an error estimate on the upper(lower) limit.
static int fgAsymptoticNumPoints
number of points used to build expected p-values
static double fgAsymptoticMaxSigma
max sigma value used to scan asymptotic expected p values
int ExclusionCleanup()
remove points that appear to have failed.
double LowerLimit() override
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
double CLs(int index) const
return the observed CLb value for the i-th entry
int FindIndex(double xvalue) const
find the index corresponding at the poi value xvalue If no points is found return -1 Note that a tole...
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
double CLb(int index) const
return the observed CLb value for the i-th entry
TList fYObjects
list of HypoTestResult for each point
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
get expected limit (lower/upper) depending on the flag for asymptotic is a special case (the distribu...
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
SamplingDistribution * GetLimitDistribution(bool lower) const
get the limit distribution (lower/upper depending on the flag) by interpolating the expected p values...
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
~HypoTestInverterResult() override
destructor
HypoTestResult is a base class for results from hypothesis tests.
virtual double CLsplusb() const
Convert AlternatePValue into a "confidence level".
TObject * Clone(const char *newname=nullptr) const override
clone method, required since some data members cannot rely on the streamers to copy them
virtual void Append(const HypoTestResult *other)
add values from another HypoTestResult
void SetBackgroundAsAlt(bool l=true)
void SetNullDistribution(SamplingDistribution *null)
bool GetBackGroundIsAlt(void) const
void SetTestStatisticData(const double tsd)
void SetAltDistribution(SamplingDistribution *alt)
void SetPValueIsRightTail(bool pr)
SamplingDistribution * GetNullDistribution(void) const
virtual double CLs() const
is simply (not a method, but a quantity)
SamplingDistribution * GetAltDistribution(void) const
This class simply holds a sampling distribution of some test statistic.
Int_t GetSize() const
size of samples
const std::vector< double > & GetSamplingDistribution() const
Get test statistics values.
SimpleInterval is a concrete implementation of the ConfInterval interface.
double fUpperLimit
upper interval limit
RooArgSet fParameters
set containing the parameter of interest
double ConfidenceLevel() const override
return the confidence interval
double fLowerLimit
lower interval limit
double fConfidenceLevel
confidence level
SimpleInterval & operator=(const SimpleInterval &other)
default constructor
virtual void RemoveAll(TCollection *col)
Remove all objects in collection col from this collection.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
virtual Double_t Derivative(Double_t x, Double_t *params=nullptr, Double_t epsilon=0.001) const
Returns the first derivative of the function at point x, computed by Richardson's extrapolation metho...
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set lower and upper limits for parameter ipar.
virtual void SetParameters(const Double_t *params)
virtual void FixParameter(Int_t ipar, Double_t value)
Fix the value of a parameter for a fit operation The specified value will be used in the fit and the ...
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
A TGraphErrors is a TGraph with error bars.
A TGraph is an object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
void Add(TObject *obj) override
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
const char * GetName() const override
Returns name of object.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
virtual TObject * RemoveAt(Int_t idx)
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
void SortItr(Iterator first, Iterator last, IndexIterator index, Bool_t down=kTRUE)
Sort the n1 elements of the Short_t array defined by its iterators.
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
T MaxElement(Long64_t n, const T *a)
Returns maximum of array a of length n.
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
static uint64_t sum(uint64_t i)