Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
distrdf003_live_visualization.py File Reference

Detailed Description

View in nbviewer Open in SWAN
Configure a Dask connection and visualize the filling of a 1D and 2D histograms distributedly.

This tutorial showcases the process of setting up real-time data representation for distributed computations. By calling the LiveVisualize function, you can observe the canvas updating with the intermediate results of the histograms as the distributed computation progresses.

from dask.distributed import LocalCluster, Client
import ROOT
# Import the live visualization function
# Point RDataFrame calls to Dask RDataFrame object
# Function to create a Dask cluster and return the client
cluster = LocalCluster(n_workers=4, threads_per_worker=1, processes=True, memory_limit="2GiB")
client = Client(cluster)
return client
# Function to fit a Gaussian function to the plot
def fit_gaus(plot):
plot.Fit("gaus")
if __name__ == "__main__":
# Setup connection to a Dask cluster
connection = create_connection()
# Create an RDataFrame that will use Dask as a backend for computations
num_entries = 100000000
d = RDataFrame(num_entries, daskclient=connection, npartitions=30)
# Define a gaussean distribution with a variable mean
dd = d.Define("x", f"gRandom->Gaus(10*rdfentry_/{num_entries}, 2)")\
.Define("y", f"gRandom->Gaus(10*rdfentry_/{num_entries}, 3)")\
# Create a 1D and a 2D histogram using the defined columns
h_normal_1d = dd.Histo1D(("normal_1d", "1D Histogram of a Normal Distribution",
100, -10, 20),
"x")
h_normal_2d = dd.Histo2D(("normal_2d", "2D Histogram of a Normal Distribution",
100, -15, 25,
100, -15, 25
), "x", "y")
# Apply LiveVisualize to the histograms.
# The `fit_gaus` function will be applied to the accumulating partial result
# of the 1D histogram. The 2D histogram will not be further modified, just drawn.
# Find more details about usage of LiveVisualize in the RDataFrame docs.
LiveVisualize({h_normal_1d: fit_gaus, h_normal_2d: None})
# Plot the histograms side by side on a canvas
c = ROOT.TCanvas("distrdf003", "distrdf003", 1600, 400)
c.Divide(2, 1)
c.cd(1)
c.cd(2)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Date
August 2023
Author
Silia Taider

Definition in file distrdf003_live_visualization.py.