This tutorial is the analysis of the W boson mass taken from the ATLAS Open Data release in 2020 (http://opendata.atlas.cern/release/2020/documentation/). The data was recorded with the ATLAS detector during 2016 at a center-of-mass energy of 13 TeV. W bosons are produced frequently at the LHC and are an important background to studies of Standard Model processes, for example the Higgs boson analyses.
The analysis is translated to a RDataFrame workflow processing up to 60 GB of simulated events and data. By default the analysis runs on a preskimmed dataset to reduce the runtime. The full dataset can be used with the –full-dataset argument and you can also run only on a fraction of the original dataset using the argument –lumi-scale.
import ROOT
import sys
import json
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument("--lumi-scale", type=float, default=0.001,
help="Run only on a fraction of the total available 10 fb^-1 (only usable together with --full-dataset)")
parser.add_argument("--full-dataset", action="store_true", default=False,
help="Use the full dataset (use --lumi-scale to run only on a fraction of it)")
parser.add_argument("-b", action="store_true", default=False, help="Use ROOT batch mode")
parser.add_argument("-t", action="store_true", default=False, help="Use implicit multi threading (for the full dataset only possible with --lumi-scale 1.0)")
if 'df105_WBosonAnalysis.py' in sys.argv[0]:
args = parser.parse_args()
else:
args = parser.parse_args(args=[])
if args.b: ROOT.gROOT.SetBatch(True)
if not args.full_dataset: lumi_scale = 0.001
else: lumi_scale = args.lumi_scale
lumi = 10064.0
print(
'Run on data corresponding to {:.2f} fb^-1 ...'.
format(lumi * lumi_scale / 1000.0))
if args.full_dataset: dataset_path = "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets/2020-01-22"
else: dataset_path = "root://eospublic.cern.ch//eos/root-eos/reduced_atlas_opendata/w"
files = json.load(open(os.path.join(ROOT.gROOT.GetTutorialsDir(), "dataframe/df105_WBosonAnalysis.json")))
processes = files.keys()
df = {}
xsecs = {}
sumws = {}
samples = []
for p in processes:
for d in files[p]:
folder = d[0]
sample = d[1]
xsecs[sample] = d[2]
sumws[sample] = d[3]
num_events = d[4]
samples.append(sample)
if args.full_dataset and lumi_scale < 1.0:
df[sample] = df[sample].
Range(
int(num_events * lumi_scale))
ROOT.gInterpreter.Declare("""
bool GoodElectronOrMuon(int type, float pt, float eta, float phi, float e, float trackd0pv, float tracksigd0pv, float z0)
{
ROOT::Math::PtEtaPhiEVector p(pt / 1000.0, eta, phi, e / 1000.0);
if (abs(z0 * sin(p.theta())) > 0.5) return false;
if (type == 11 && abs(eta) < 2.46 && (abs(eta) < 1.37 || abs(eta) > 1.52)) {
if (abs(trackd0pv / tracksigd0pv) > 5) return false;
return true;
}
if (type == 13 && abs(eta) < 2.5) {
if (abs(trackd0pv / tracksigd0pv) > 3) return false;
return true;
}
return false;
}
""")
for s in samples:
df[s] = df[s].Filter("trigE || trigM")\
.Filter("met_et > 30000")
df[s] = df[s].Define("good_lep", "lep_isTightID && lep_pt > 35000 && lep_ptcone30 / lep_pt < 0.1 && lep_etcone20 / lep_pt < 0.1")\
.Filter("ROOT::VecOps::Sum(good_lep) == 1")
df[s] = df[s].Define("idx", "ROOT::VecOps::ArgMax(good_lep)")\
.Filter("GoodElectronOrMuon(lep_type[idx], lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx], lep_trackd0pvunbiased[idx], lep_tracksigd0pvunbiased[idx], lep_z0[idx])")
for s in samples:
if "data" in s:
df[s] = df[s].Define("weight", "1.0")
else:
df[s] = df[s].Define(
"weight",
"scaleFactor_ELE * scaleFactor_MUON * scaleFactor_LepTRIGGER * scaleFactor_PILEUP * mcWeight * {} / {} * {}".
format(xsecs[s], sumws[s], lumi))
ROOT.gInterpreter.Declare("""
float ComputeTransverseMass(float met_et, float met_phi, float lep_pt, float lep_eta, float lep_phi, float lep_e)
{
ROOT::Math::PtEtaPhiEVector met(met_et, 0, met_phi, met_et);
ROOT::Math::PtEtaPhiEVector lep(lep_pt, lep_eta, lep_phi, lep_e);
return (met + lep).Mt() / 1000.0;
}
""")
histos = {}
for s in samples:
df[s] = df[s].Define("mt_w", "ComputeTransverseMass(met_et, met_phi, lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx])")
def merge_histos(label):
h = None
for i, d in enumerate(files[label]):
t = histos[d[1]].GetValue()
if i == 0: h = t.Clone()
else: h.Add(t)
h.SetNameTitle(label, label)
return h
data = merge_histos("data")
wjets = merge_histos("wjets")
zjets = merge_histos("zjets")
ttbar = merge_histos("ttbar")
diboson = merge_histos("diboson")
singletop = merge_histos("singletop")
ROOT.gROOT.SetStyle("ATLAS")
c = ROOT.TCanvas("c", "", 600, 600)
c.SetTickx(0)
c.SetTicky(0)
c.SetLogy()
stack = ROOT.THStack()
for h, color in zip(
[singletop, diboson, ttbar, zjets, wjets],
[(208, 240, 193), (195, 138, 145), (155, 152, 204), (248, 206, 104), (222, 90, 106)]):
h.SetLineWidth(1)
h.SetLineColor(1)
h.SetFillColor(ROOT.TColor.GetColor(*color))
stack.Add(h)
stack.Draw("HIST")
stack.GetXaxis().SetLabelSize(0.04)
stack.GetXaxis().SetTitleSize(0.045)
stack.GetXaxis().SetTitleOffset(1.3)
stack.GetXaxis().SetTitle("m_{T}^{W#rightarrow l#nu} [GeV]")
stack.GetYaxis().SetTitle("Events")
stack.GetYaxis().SetLabelSize(0.04)
stack.GetYaxis().SetTitleSize(0.045)
stack.SetMaximum(1e10 * args.lumi_scale)
stack.SetMinimum(1)
data.SetMarkerStyle(20)
data.SetMarkerSize(1.2)
data.SetLineWidth(2)
data.SetLineColor(ROOT.kBlack)
data.Draw("E SAME")
legend = ROOT.TLegend(0.60, 0.65, 0.92, 0.92)
legend.SetTextFont(42)
legend.SetFillStyle(0)
legend.SetBorderSize(0)
legend.SetTextSize(0.04)
legend.SetTextAlign(32)
legend.AddEntry(data, "Data" ,"lep")
legend.AddEntry(wjets, "W+jets", "f")
legend.AddEntry(zjets, "Z+jets", "f")
legend.AddEntry(ttbar, "t#bar{t}", "f")
legend.AddEntry(diboson, "Diboson", "f")
legend.AddEntry(singletop, "Single top", "f")
legend.Draw()
text = ROOT.TLatex()
text.SetNDC()
text.SetTextFont(72)
text.SetTextSize(0.045)
text.DrawLatex(0.21, 0.86, "ATLAS")
text.SetTextFont(42)
text.DrawLatex(0.21 + 0.16, 0.86, "Open Data")
text.SetTextSize(0.04)
text.DrawLatex(0.21, 0.80,
"#sqrt{{s}} = 13 TeV, {:.2f} fb^{{-1}}".
format(lumi * args.lumi_scale / 1000.0))
c.SaveAs("df105_WBosonAnalysis.png")
print("Saved figure to df105_WBosonAnalysis.png")
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
unsigned int RunGraphs(std::vector< RResultHandle > handles)
Trigger the event loop of multiple RDataFrames concurrently.
void EnableImplicitMT(UInt_t numthreads=0)
Enable ROOT's implicit multi-threading for all objects and methods that provide an internal paralleli...
A struct which stores the parameters of a TH1D.