75 fA1(0), fA2(0), fA3(0), fAsOK(
kFALSE),
89 fA1(t.fA1), fA2(t.fA2), fA3(t.fA3), fAsOK(t.fAsOK),
90 fUseTrans (t.fUseTrans),
91 fEditTrans(t.fEditTrans),
103 fA1(0), fA2(0), fA3(0), fAsOK(
kFALSE),
106 fEditRotation(
kTRUE),
117 fA1(0), fA2(0), fA3(0), fAsOK(
kFALSE),
120 fEditRotation(
kTRUE),
204 t(i,
j) = -s; t(
j,i) = s;
226 f = (
e < 0.0f) ? -
e :
e;
241 x.fX = 1.0f;
x.fY =
x.fZ = 0.0f;
243 x.fZ = 1.0f;
x.fX =
x.fY = 0.0f;
249 x.fY = 1.0f;
x.fX =
x.fZ = 0.0f;
251 x.fZ = 1.0f;
x.fX =
x.fY = 0.0f;
258 c1 = 2.0f /
u.Mag2();
259 c2 = 2.0f /
v.Mag2();
262 for (
int i = 0; i < 3; i++) {
263 for (
int j = 0;
j < 3;
j++) {
288 CM(1, 1) =
e +
h *
v.fY *
v.fY;
304 for(
int c=0;
c<4; ++
c, col+=4) {
306 for(
int r=0;
r<4; ++
r, ++row)
307 buf[
r] = row[0]*col[0] + row[4]*col[1] + row[8]*col[2] + row[12]*col[3];
308 col[0] = buf[0]; col[1] = buf[1]; col[2] = buf[2]; col[3] = buf[3];
320 for(
int r=0;
r<4; ++
r, ++row) {
322 for(
int c=0;
c<4; ++
c, col+=4)
323 buf[
c] = row[0]*col[0] + row[4]*col[1] + row[8]*col[2] + row[12]*col[3];
324 row[0] = buf[0]; row[4] = buf[1]; row[8] = buf[2]; row[12] = buf[3];
382 --
i1 <<= 2; --
i2 <<= 2;
383 for (
int r=0;
r<4; ++
r, ++row) {
384 b1 = cos*row[
i1] + sin*row[
i2];
385 b2 = cos*row[
i2] - sin*row[
i1];
386 row[
i1] = b1; row[
i2] = b2;
422 for(
int c=0;
c<4; ++
c, col+=4) {
423 b1 = cos*col[
i1] - sin*col[
i2];
424 b2 = cos*col[
i2] + sin*col[
i1];
425 col[
i1] = b1; col[
i2] = b2;
473 col[0] =
x; col[1] =
y; col[2] = z;
500 v.SetXYZ(col[0], col[1], col[2]);
608 for(
int i=0; i<
n; i++) {
611 case 'x':
case 'X':
RotateLF(2, 3,
a[i]);
break;
612 case 'y':
case 'Y':
RotateLF(3, 1,
a[i]);
break;
613 case 'z':
case 'Z':
RotateLF(1, 2,
a[i]);
break;
628 if(
d>1)
d=1;
else if(
d<-1)
d=-1;
828 c[0] /=
l;
c[1] /=
l;
c[2] /=
l;
909 throw(
eh +
"matrix is singular.");
944 if (
R__b.IsReading()) {
958 for(
Int_t i=0; i<4; ++i, ++row)
959 printf(
"%8.3f %8.3f %8.3f | %8.3f\n", row[0], row[4], row[8], row[12]);
969 s.setf(std::ios::fixed, std::ios::floatfield);
971 for(
Int_t i=1; i<=4; i++)
973 s << t(i,
j) << ((
j==4) ?
"\n" :
"\t");
1001 m[0] =
r[0]*s[0];
m[1] =
r[3]*s[0];
m[2] =
r[6]*s[0];
m[3] = 0;
1002 m[4] =
r[1]*s[1];
m[5] =
r[4]*s[1];
m[6] =
r[7]*s[1];
m[7] = 0;
1003 m[8] =
r[2]*s[2];
m[9] =
r[5]*s[2];
m[10] =
r[8]*s[2];
m[11] = 0;
1004 m[12] = t[0];
m[13] = t[1];
m[14] = t[2];
m[15] = 1;
1008 m[0] =
r[0];
m[1] =
r[3];
m[2] =
r[6];
m[3] = 0;
1009 m[4] =
r[1];
m[5] =
r[4];
m[6] =
r[7];
m[7] = 0;
1010 m[8] =
r[2];
m[9] =
r[5];
m[10] =
r[8];
m[11] = 0;
1011 m[12] = t[0];
m[13] = t[1];
m[14] = t[2];
m[15] = 1;
1029 r[0] =
m[0]/s[0];
r[3] =
m[1]/s[0];
r[6] =
m[2]/s[0];
m += 4;
1030 r[1] =
m[0]/s[1];
r[4] =
m[1]/s[1];
r[7] =
m[2]/s[1];
m += 4;
1031 r[2] =
m[0]/s[2];
r[5] =
m[1]/s[2];
r[8] =
m[2]/s[2];
m += 4;
1032 t[0] =
m[0]; t[1] =
m[1]; t[2] =
m[2];
1037 r[0] = 1;
r[3] = 0;
r[6] = 0;
1038 r[1] = 0;
r[4] = 1;
r[7] = 0;
1039 r[2] = 0;
r[5] = 0;
r[8] = 1;
1040 s[0] = s[1] = s[2] = 1;
1041 t[0] = t[1] = t[2] = 0;
1056 m[0] =
fM[0];
m[1] =
fM[4];
m[2] =
fM[8];
m[3] =
fM[3];
1057 m[4] =
fM[1];
m[5] =
fM[5];
m[6] =
fM[9];
m[7] =
fM[7];
1058 m[8] =
fM[2];
m[9] =
fM[6];
m[10] =
fM[10];
m[11] =
fM[11];
1059 m[12] =
fM[12];
m[13] =
fM[13];
m[14] =
fM[14];
m[15] =
fM[15];
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
std::ostream & operator<<(std::ostream &s, const TEveTrans &t)
Print to std::ostream.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Generic 3D primitive description class.
Buffer base class used for serializing objects.
Exception class thrown by TEve classes and macros.
TEveTrans is a 4x4 transformation matrix for homogeneous coordinates stored internally in a column-ma...
void SetGeoHMatrix(TGeoHMatrix &mat)
Set TGeoHMatrix mat.
void OrtoNorm3()
Orto-norm columns 1 to 3.
void MultLeft(const TEveTrans &t)
Multiply from left: this = t * this.
void UnitRot()
Reset rotation part of the matrix to unity.
Bool_t IsScale(Double_t low=0.9, Double_t high=1.1) const
Test if the transformation is a scale.
void SetBaseVec(Int_t b, Double_t x, Double_t y, Double_t z)
Set base-vector with index b.
Double_t Orto3Column(Int_t col, Int_t ref)
Orto-norm 3-vector in column col with respect to column ref.
void MoveLF(Int_t ai, Double_t amount)
Move in local-frame along axis with index ai.
TEveTrans operator*(const TEveTrans &t)
Copy, multiply from right and return product.
TEveTrans()
Default constructor.
void Move(const TEveTrans &a, Int_t ai, Double_t amount)
Move in a's coord-system along axis-index ai.
void SetFromArray(const Double_t arr[16])
Set matrix from Double_t array.
void Print(Option_t *option="") const override
Print in reasonable format.
void Scale(Double_t sx, Double_t sy, Double_t sz)
Scale matrix. Translation part untouched.
void Rotate(const TEveTrans &a, Int_t i1, Int_t i2, Double_t amount)
Rotate in a's coord-system, rotating base vector with index i1 into i2.
void MultRight(const TEveTrans &t)
Multiply from right: this = this * t.
void RotateIP(TVector3 &v) const
Rotate vector in-place. Translation is NOT applied.
TVector3 GetBaseVec(Int_t b) const
Get base-vector with index b.
TVector3 Multiply(const TVector3 &v, Double_t w=1) const
Multiply vector and return it.
void Move3(const TEveTrans &a, Double_t x, Double_t y, Double_t z)
General move in a's coord-system.
void RotatePF(Int_t i1, Int_t i2, Double_t amount)
Rotate in parent frame. Does optimised version of MultLeft.
void Streamer(TBuffer &) override
Stream an object of class TEveTrans.
void SetScale(Double_t sx, Double_t sy, Double_t sz)
Set scaling.
void SetRotByAngles(Float_t a1, Float_t a2, Float_t a3)
void SetScaleX(Double_t sx)
Change x scaling.
void RotateLF(Int_t i1, Int_t i2, Double_t amount)
Rotate in local frame. Does optimised version of MultRight.
void UnitTrans()
Reset matrix to unity.
void SetScaleY(Double_t sy)
Change y scaling.
Double_t Norm3Column(Int_t col)
Norm 3-vector in column col.
void SetRotByAnyAngles(Float_t a1, Float_t a2, Float_t a3, const char *pat)
Sets Rotation part as given by angles a1, a1, a3 and pattern pat.
void SetupFromToVec(const TEveVector &from, const TEveVector &to)
A function for creating a rotation matrix that rotates a vector called "from" into another vector cal...
void MovePF(Int_t ai, Double_t amount)
Move in parent-frame along axis index ai.
Double_t Invert()
Invert matrix.
void Move3LF(Double_t x, Double_t y, Double_t z)
General move in local-frame.
void TransposeRotationPart()
Transpose 3x3 rotation sub-matrix.
void SetupRotation(Int_t i, Int_t j, Double_t f)
Setup the matrix as an elementary rotation.
void SetBuffer3D(TBuffer3D &buff)
Fill transformation part TBuffer3D core section.
void GetScale(Double_t &sx, Double_t &sy, Double_t &sz) const
Deduce scales from sizes of base vectors.
void MultiplyIP(TVector3 &v, Double_t w=1) const
Multiply vector in-place.
Double_t Unscale()
Remove scaling, make all base vectors of unit length.
void SetFrom(Double_t *carr)
void SetTrans(const TEveTrans &t, Bool_t copyAngles=kTRUE)
Set matrix from another,.
void Move3PF(Double_t x, Double_t y, Double_t z)
General move in parent-frame.
void SetScaleZ(Double_t sz)
Change z scaling.
void GetRotAngles(Float_t *x) const
Get Cardan rotation angles (pattern xYz above).
void SetPos(Double_t x, Double_t y, Double_t z)
Set position (base-vec 4).
Double_t CM(Int_t i, Int_t j) const
void ZeroTrans(Double_t w=1.0)
Reset matrix to zero, only the perspective scaling is set to w (1 by default).
Matrix class used for computing global transformations Should NOT be used for node definition.
Geometrical transformation package.
Mother of all ROOT objects.
void SetXYZ(Double_t x, Double_t y, Double_t z)
Double_t ASin(Double_t)
Returns the principal value of the arc sine of x, expressed in radians.
Double_t ATan2(Double_t y, Double_t x)
Returns the principal value of the arc tangent of y/x, expressed in radians.
Double_t Sqrt(Double_t x)
Returns the square root of x.
Double_t Cos(Double_t)
Returns the cosine of an angle of x radians.
Double_t Sin(Double_t)
Returns the sine of an angle of x radians.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
constexpr Double_t TwoPi()