Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
SpecFuncMathMore.cxx File Reference
#include <cmath>
#include "gsl/gsl_sf_bessel.h"
#include "gsl/gsl_sf_legendre.h"
#include "gsl/gsl_sf_lambert.h"
#include "gsl/gsl_sf_laguerre.h"
#include "gsl/gsl_sf_hyperg.h"
#include "gsl/gsl_sf_ellint.h"
#include "gsl/gsl_sf_expint.h"
#include "gsl/gsl_sf_zeta.h"
#include "gsl/gsl_sf_airy.h"
#include "gsl/gsl_sf_coupling.h"
Include dependency graph for SpecFuncMathMore.cxx:

Namespaces

namespace  ROOT
 tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tbb::task_arena without forward declaring tbb::interface7
 
namespace  ROOT::Math
 
namespace  ROOT::Math::internal
 

Macros

#define PI   3.14159265358979323846264338328 /* pi */
 

Functions

double ROOT::Math::internal::legendre (unsigned l, unsigned m, double x)
 
Special Functions from MathMore
double ROOT::Math::airy_Ai (double x)
 Calculates the Airy function Ai.
 
double ROOT::Math::airy_Ai_deriv (double x)
 Calculates the derivative of the Airy function Ai.
 
double ROOT::Math::airy_Bi (double x)
 Calculates the Airy function Bi.
 
double ROOT::Math::airy_Bi_deriv (double x)
 Calculates the derivative of the Airy function Bi.
 
double ROOT::Math::airy_zero_Ai (unsigned int s)
 Calculates the zeroes of the Airy function Ai.
 
double ROOT::Math::airy_zero_Ai_deriv (unsigned int s)
 Calculates the zeroes of the derivative of the Airy function Ai.
 
double ROOT::Math::airy_zero_Bi (unsigned int s)
 Calculates the zeroes of the Airy function Bi.
 
double ROOT::Math::airy_zero_Bi_deriv (unsigned int s)
 Calculates the zeroes of the derivative of the Airy function Bi.
 
double ROOT::Math::assoc_laguerre (unsigned n, double m, double x)
 Computes the generalized Laguerre polynomials for \( n \geq 0, m > -1 \).
 
double ROOT::Math::assoc_legendre (unsigned l, unsigned m, double x)
 Computes the associated Legendre polynomials.
 
double ROOT::Math::comp_ellint_1 (double k)
 Calculates the complete elliptic integral of the first kind.
 
double ROOT::Math::comp_ellint_2 (double k)
 Calculates the complete elliptic integral of the second kind.
 
double ROOT::Math::comp_ellint_3 (double n, double k)
 Calculates the complete elliptic integral of the third kind.
 
double ROOT::Math::conf_hyperg (double a, double b, double z)
 Calculates the confluent hypergeometric functions of the first kind.
 
double ROOT::Math::conf_hypergU (double a, double b, double z)
 Calculates the confluent hypergeometric functions of the second kind, known also as Kummer function of the second kind, it is related to the confluent hypergeometric functions of the first kind.
 
double ROOT::Math::cyl_bessel_i (double nu, double x)
 Calculates the modified Bessel function of the first kind (also called regular modified (cylindrical) Bessel function).
 
double ROOT::Math::cyl_bessel_j (double nu, double x)
 Calculates the (cylindrical) Bessel functions of the first kind (also called regular (cylindrical) Bessel functions).
 
double ROOT::Math::cyl_bessel_k (double nu, double x)
 Calculates the modified Bessel functions of the second kind (also called irregular modified (cylindrical) Bessel functions).
 
double ROOT::Math::cyl_neumann (double nu, double x)
 Calculates the (cylindrical) Bessel functions of the second kind (also called irregular (cylindrical) Bessel functions or (cylindrical) Neumann functions).
 
double ROOT::Math::ellint_1 (double k, double phi)
 Calculates the incomplete elliptic integral of the first kind.
 
double ROOT::Math::ellint_2 (double k, double phi)
 Calculates the complete elliptic integral of the second kind.
 
double ROOT::Math::ellint_3 (double n, double k, double phi)
 Calculates the complete elliptic integral of the third kind.
 
double ROOT::Math::expint (double x)
 Calculates the exponential integral.
 
double ROOT::Math::expint_n (int n, double x)
 
double ROOT::Math::hyperg (double a, double b, double c, double x)
 Calculates Gauss' hypergeometric function.
 
double ROOT::Math::laguerre (unsigned n, double x)
 Calculates the Laguerre polynomials.
 
double ROOT::Math::lambert_W0 (double x)
 Calculates the Lambert W function on branch 0.
 
double ROOT::Math::lambert_Wm1 (double x)
 Calculates the Lambert W function on branch -1.
 
double ROOT::Math::legendre (unsigned l, double x)
 Calculates the Legendre polynomials.
 
double ROOT::Math::riemann_zeta (double x)
 Calculates the Riemann zeta function.
 
double ROOT::Math::sph_bessel (unsigned n, double x)
 Calculates the spherical Bessel functions of the first kind (also called regular spherical Bessel functions).
 
double ROOT::Math::sph_legendre (unsigned l, unsigned m, double theta)
 Computes the spherical (normalized) associated Legendre polynomials, or spherical harmonic without azimuthal dependence ( \(e^(im\phi)\)).
 
double ROOT::Math::sph_neumann (unsigned n, double x)
 Calculates the spherical Bessel functions of the second kind (also called irregular spherical Bessel functions or spherical Neumann functions).
 
double ROOT::Math::wigner_3j (int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc)
 Calculates the Wigner 3j coupling coefficients.
 
double ROOT::Math::wigner_6j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf)
 Calculates the Wigner 6j coupling coefficients.
 
double ROOT::Math::wigner_9j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji)
 Calculates the Wigner 9j coupling coefficients.
 

Macro Definition Documentation

◆ PI

#define PI   3.14159265358979323846264338328 /* pi */

Definition at line 16 of file SpecFuncMathMore.cxx.