Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
RegressionKeras.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_keras
4## \notebook -nodraw
5## This tutorial shows how to do regression in TMVA with neural networks
6## trained with keras.
7##
8## \macro_code
9##
10## \date 2017
11## \author TMVA Team
12
13from ROOT import TMVA, TFile, TTree, TCut, gROOT
14from subprocess import call
15from os.path import isfile
16
17from tensorflow.keras.models import Sequential
18from tensorflow.keras.layers import Dense, Activation
19from tensorflow.keras.optimizers import SGD
20
21# Setup TMVA
24
25output = TFile.Open('TMVA_Regression_Keras.root', 'RECREATE')
26factory = TMVA.Factory('TMVARegression', output,
27 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Regression')
28
29# Load data
30if not isfile('tmva_reg_example.root'):
31 call(['curl', '-L', '-O', 'http://root.cern/files/tmva_reg_example.root'])
32
33data = TFile.Open(str(gROOT.GetTutorialDir()) + '/tmva/data/tmva_reg_example.root')
34tree = data.Get('TreeR')
35
36dataloader = TMVA.DataLoader('dataset')
37for branch in tree.GetListOfBranches():
38 name = branch.GetName()
39 if name != 'fvalue':
42
44#use only 1000 events since evaluation is very slow (especially on MacOS). Increase it to get meaningful results
46 'nTrain_Regression=1000:SplitMode=Random:NormMode=NumEvents:!V')
47
48# Generate model
49
50# Define model
51model = Sequential()
52model.add(Dense(64, activation='tanh', input_dim=2))
53model.add(Dense(1, activation='linear'))
54
55# Set loss and optimizer
56model.compile(loss='mean_squared_error', optimizer=SGD(learning_rate=0.01), weighted_metrics=[])
57
58# Store model to file
59model.save('modelRegression.h5')
61
62# Book methods
63factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
64 'H:!V:VarTransform=D,G:FilenameModel=modelRegression.h5:FilenameTrainedModel=trainedModelRegression.h5:NumEpochs=20:BatchSize=32')
65factory.BookMethod(dataloader, TMVA.Types.kBDT, 'BDTG',
66 '!H:!V:VarTransform=D,G:NTrees=1000:BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=4')
67
68# Run TMVA
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
A specialized string object used for TTree selections.
Definition TCut.h:25
This is the main MVA steering class.
Definition Factory.h:80