13#ifndef ROOT_Fit_LogLikelihoodFCN 
   14#define ROOT_Fit_LogLikelihoodFCN 
   39template<
class DerivFunType,
class ModelFunType = ROOT::Math::IParamMultiFunction>
 
   44   typedef typename ModelFunType::BackendType 
T;
 
  155   virtual double DoEval (
const double * 
x)
 const {
 
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void on
 
BasicFCN class: base class for the objective functions used in the fits It has a reference to the dat...
 
void SetData(const std::shared_ptr< DataType > &data)
Set the data pointer.
 
std::shared_ptr< IModelFunction > ModelFunctionPtr() const
access to function pointer
 
void SetModelFunction(const std::shared_ptr< IModelFunction > &func)
Set the function pointer.
 
std::shared_ptr< DataType > DataPtr() const
access to data pointer
 
LogLikelihoodFCN class for likelihood fits.
 
BaseObjFunction::BaseFunction BaseFunction
 
LogLikelihoodFCN(const UnBinData &data, const IModelFunction &func, int weight=0, bool extended=false, const ::ROOT::EExecutionPolicy &executionPolicy=::ROOT::EExecutionPolicy::kSequential)
Constructor from unbin data set and model function (pdf) for object managed by users.
 
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
 
LogLikelihoodFCN & operator=(const LogLikelihoodFCN &rhs)
Assignment operator.
 
virtual double DoDerivative(const double *x, unsigned int icoord) const
 
::ROOT::Math::IParamMultiFunctionTempl< T > IModelFunction
 
int fWeight
flag to indicate if needs to evaluate using weight or weight squared (default weight = 0)
 
LogLikelihoodFCN(const LogLikelihoodFCN &f)
Copy constructor.
 
BasicFCN< DerivFunType, ModelFunType, UnBinData > BaseFCN
 
ModelFunType::BackendType T
 
LogLikelihoodFCN(const std::shared_ptr< UnBinData > &data, const std::shared_ptr< IModelFunction > &func, int weight=0, bool extended=false, const ::ROOT::EExecutionPolicy &executionPolicy=::ROOT::EExecutionPolicy::kSequential)
Constructor from unbin data set and model function (pdf)
 
void UseSumOfWeightSquare(bool on=true)
 
virtual void Gradient(const double *x, double *g) const
 
::ROOT::Math::BasicFitMethodFunction< DerivFunType > BaseObjFunction
 
virtual BaseFunction * Clone() const
clone the function (need to return Base for Windows)
 
virtual ~LogLikelihoodFCN()
Destructor (no operations)
 
virtual unsigned int NFitPoints() const
 
std::vector< double > fGrad
for derivatives
 
BaseObjFunction::Type_t Type_t
 
bool fIsExtended
flag for indicating if likelihood is extended
 
::ROOT::EExecutionPolicy fExecutionPolicy
Execution policy.
 
unsigned int fNEffPoints
number of effective points used in the fit
 
virtual double DataElement(const double *x, unsigned int i, double *g, double *h=nullptr, bool fullHessian=false) const
i-th likelihood contribution and its gradient
 
virtual double DoEval(const double *x) const
Evaluation of the function (required by interface)
 
Class describing the un-binned data sets (just x coordinates values) of any dimensions.
 
Type_t
enumeration specifying the possible fit method types
 
FunctionType::BaseFunc BaseFunction
 
virtual void UpdateNCalls() const
update number of calls
 
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
 
LogLikelihoodFCN< ROOT::Math::IMultiGenFunction, ROOT::Math::IParamMultiFunction > LogLikelihoodFunction
 
LogLikelihoodFCN< ROOT::Math::IMultiGradFunction, ROOT::Math::IParamMultiFunction > LogLikelihoodGradFunction
 
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
 
static double EvalLogL(const IModelFunctionTempl< double > &func, const UnBinData &data, const double *p, int iWeight, bool extended, unsigned int &nPoints, ::ROOT::EExecutionPolicy executionPolicy, unsigned nChunks=0)
 
static void EvalLogLGradient(const IModelFunctionTempl< double > &func, const UnBinData &data, const double *p, double *g, unsigned int &nPoints, ::ROOT::EExecutionPolicy executionPolicy=::ROOT::EExecutionPolicy::kSequential, unsigned nChunks=0)
 
static double EvalPdf(const IModelFunctionTempl< double > &func, const UnBinData &data, const double *p, unsigned int i, double *g, double *h, bool hasGrad, bool fullHessian)