55 fXmin = -std::numeric_limits<double>::infinity();
56 fXmax = std::numeric_limits<double>::infinity();
67 if (
x >=
fXmax)
return 1.0;
96 fXmin = -std::numeric_limits<double>::infinity();
97 fXmax = std::numeric_limits<double>::infinity();
99 if (
fXmin == -std::numeric_limits<double>::infinity() &&
fXmax == std::numeric_limits<double>::infinity() ) {
102 else if (
fXmin == -std::numeric_limits<double>::infinity() )
104 else if (
fXmax == std::numeric_limits<double>::infinity() )
112 if (
x >=
fXmax)
return 1.0;
113 if (
fXmin == -std::numeric_limits<double>::infinity() )
126 MATH_ERROR_MSG(
"SetDistribution",
"Cannot set distribution type! Distribution type option must be enabled.");
136 fSamples(std::vector<std::vector<
Double_t> >(2)),
137 fTestSampleFromH0(
kFALSE) {
138 Bool_t badSampleArg = sample1 ==
nullptr || sample1Size == 0;
140 std::string msg =
"'sample1";
141 msg += !sample1Size ?
"Size' cannot be zero" :
"' cannot be zero-length";
143 assert(!badSampleArg);
145 badSampleArg = sample2 ==
nullptr || sample2Size == 0;
147 std::string msg =
"'sample2";
148 msg += !sample2Size ?
"Size' cannot be zero" :
"' cannot be zero-length";
150 assert(!badSampleArg);
152 std::vector<const Double_t*> samples(2);
153 std::vector<size_t> samplesSizes(2);
154 samples[0] = sample1;
155 samples[1] = sample2;
156 samplesSizes[0] = sample1Size;
157 samplesSizes[1] = sample2Size;
163 fSamples(std::vector<std::vector<
Double_t> >(1)),
164 fTestSampleFromH0(
kTRUE) {
165 Bool_t badSampleArg = sample ==
nullptr || sampleSize == 0;
167 std::string msg =
"'sample";
168 msg += !sampleSize ?
"Size' cannot be zero" :
"' cannot be zero-length";
170 assert(!badSampleArg);
172 std::vector<const Double_t*> samples(1, sample);
173 std::vector<size_t> samplesSizes(1, sampleSize);
182 fCombinedSamples.assign(std::accumulate(samplesSizes.begin(), samplesSizes.end(), 0u), 0.0);
183 size_t combinedSamplesSize = 0;
184 for (
size_t i = 0; i < samples.size(); ++i) {
185 fSamples[i].assign(samples[i], samples[i] + samplesSizes[i]);
187 for (
size_t j = 0; j < samplesSizes[i]; ++j) {
190 combinedSamplesSize += samplesSizes[i];
195 if (degenerateSamples) {
196 std::string msg =
"Degenerate sample";
197 msg += samplesSizes.size() > 1 ?
"s!" :
"!";
198 msg +=
" Sampling values all identical.";
200 assert(!degenerateSamples);
269 MATH_WARN_MSG(
"SetDistributionFunction",
"Distribution type is changed to user defined");
281 Bool_t badSampleArg = sample ==
nullptr || sampleSize == 0;
283 std::string msg =
"'sample";
284 msg += !sampleSize ?
"Size' cannot be zero" :
"' cannot be zero-length";
286 assert(!badSampleArg);
290 fSamples = std::vector<std::vector<Double_t> >(1);
292 SetSamples(std::vector<const Double_t*>(1, sample), std::vector<size_t>(1, sampleSize));
314 Double_t sigmaN = 0.0,
h = 0.0,
H = 0.0,
g = 0.0,
a,
b,
c,
d, k = ns.size();
316 for (
size_t i = 0; i < ns.size(); ++i) {
323 std::vector<double> invI(
N);
324 for (
size_t i = 1; i <=
N - 1; ++i) {
328 for (
size_t i = 1; i <=
N - 2; ++i) {
329 double tmp = invI[
N-i];
330 for (
size_t j = i + 1; j <=
N - 1; ++j) {
337 const double emc = 0.5772156649015328606065120900824024;
338 h = std::log(
double(
N-1) ) + emc;
341 double k2 = std::pow(k,2);
342 a = (4 *
g - 6) * k + (10 - 6 *
g) *
H - 4 *
g + 6;
343 b = (2 *
g - 4) * k2 + 8 *
h * k + (2 *
g - 14 *
h - 4) *
H - 8 *
h + 4 *
g - 6;
344 c = (6 *
h + 2 *
g - 2) * k2 + (4 *
h - 4 *
g + 6) * k + (2 *
h - 6) *
H + 4 *
h;
345 d = (2 *
h + 6) * k2 - 4 *
h * k;
346 sigmaN +=
a * std::pow(
double(
N),3) +
b * std::pow(
double(
N),2) +
c *
N +
d;
382 double ts[ ] = { -1.1954, -1.5806, -1.8172,
383 -2.0032, -2.2526, -2.4204, -2.5283, -4.2649, -1.1786, -1.5394,
384 -1.7728, -1.9426, -2.1685, -2.3288, -2.4374, -3.8906, -1.166,
385 -1.5193, -1.7462, -1.9067, -2.126, -2.2818, -2.3926, -3.719,
386 -1.1407, -1.4659, -1.671, -1.8105, -2.0048, -2.1356, -2.2348,
387 -3.2905, -1.1253, -1.4371, -1.6314, -1.7619, -1.9396, -2.0637,
388 -2.1521, -3.0902, -1.0777, -1.3503, -1.5102, -1.6177, -1.761,
389 -1.8537, -1.9178, -2.5758, -1.0489, -1.2984, -1.4415, -1.5355,
390 -1.6625, -1.738, -1.7936, -2.3263, -0.9978, -1.2098, -1.3251,
391 -1.4007, -1.4977, -1.5555, -1.5941, -1.96, -0.9417, -1.1187,
392 -1.209, -1.2671, -1.3382, -1.379, -1.405, -1.6449, -0.8981, -1.0491,
393 -1.1235, -1.1692, -1.2249, -1.2552, -1.2755, -1.4395, -0.8598,
394 -0.9904, -1.0513, -1.0879, -1.1317, -1.155, -1.1694, -1.2816,
395 -0.7258, -0.7938, -0.8188, -0.8312, -0.8435, -0.8471, -0.8496,
396 -0.8416, -0.5966, -0.617, -0.6177, -0.6139, -0.6073, -0.5987,
397 -0.5941, -0.5244, -0.4572, -0.4383, -0.419, -0.4033, -0.3834,
398 -0.3676, -0.3587, -0.2533, -0.2966, -0.2428, -0.2078, -0.1844,
399 -0.1548, -0.1346, -0.1224, 0, -0.1009, -0.0169, 0.0304, 0.0596,
400 0.0933, 0.1156, 0.1294, 0.2533, 0.1571, 0.2635, 0.3169, 0.348,
401 0.3823, 0.4038, 0.4166, 0.5244, 0.5357, 0.6496, 0.6992, 0.7246,
402 0.7528, 0.7683, 0.7771, 0.8416, 1.2255, 1.2989, 1.3202, 1.3254,
403 1.3305, 1.3286, 1.3257, 1.2816, 1.5262, 1.5677, 1.5709, 1.5663,
404 1.5561, 1.5449, 1.5356, 1.4395, 1.9633, 1.943, 1.919, 1.8975,
405 1.8641, 1.8389, 1.8212, 1.6449, 2.7314, 2.5899, 2.5, 2.4451,
406 2.3664, 2.3155, 2.2823, 1.96, 3.7825, 3.4425, 3.2582, 3.1423,
407 3.0036, 2.9101, 2.8579, 2.3263, 4.1241, 3.716, 3.4984, 3.3651,
408 3.2003, 3.0928, 3.0311, 2.4324, 4.6044, 4.0847, 3.8348, 3.6714,
409 3.4721, 3.3453, 3.2777, 2.5758, 5.409, 4.7223, 4.4022, 4.1791,
410 3.9357, 3.7809, 3.6963, 2.807, 6.4954, 5.5823, 5.1456, 4.8657,
411 4.5506, 4.3275, 4.2228, 3.0902, 6.8279, 5.8282, 5.3658, 5.0749,
412 4.7318, 4.4923, 4.3642, 3.1747, 7.2755, 6.197, 5.6715, 5.3642,
413 4.9991, 4.7135, 4.5945, 3.2905, 8.1885, 6.8537, 6.2077, 5.8499,
414 5.4246, 5.1137, 4.9555, 3.4808, 9.3061, 7.6592, 6.85, 6.4806,
415 5.9919, 5.6122, 5.5136, 3.719, 9.6132, 7.9234, 7.1025, 6.6731,
416 6.1549, 5.8217, 5.7345, 3.7911, 10.0989, 8.2395, 7.4326, 6.9567,
417 6.3908, 6.011, 5.9566, 3.8906, 10.8825, 8.8994, 7.8934, 7.4501,
418 6.9009, 6.4538, 6.2705, 4.0556, 11.8537, 9.5482, 8.5568, 8.0283,
419 7.4418, 6.9524, 6.6195, 4.2649 };
426 double p[] = { .00001,.00005,.0001,.0005,.001,.005,.01,.025,.05,.075,.1,.2,.3,.4,.5,.6,.7,.8,.9,
427 .925,.95,.975,.99,.9925,.995,.9975,.999,.99925,.9995,.99975,.9999,.999925,.99995,.999975,.99999 };
430 const int nbins = 35;
437 MATH_ERROR_MSG(
"InterpolatePValues",
"Interpolation not implemented for nsamples not equal to 2");
440 std::vector<double> ts2(nbins);
441 std::vector<double> lp(nbins);
442 for (
int i = 0; i < nbins; ++i)
444 ts2[i] = ts[
offset+ i * ns];
446 lp[i] = std::log(
p[i]/(1.-
p[i] ) );
450 int i1 = std::distance(ts2.begin(), std::lower_bound(ts2.begin(), ts2.end(), tx ) ) - 1;
458 if (i2 >=
int(ts2.size()) ) {
464 assert(i1 < (
int) lp.size() && i2 < (
int) lp.size() );
467 double tx1 = ts2[i1];
468 double tx2 = ts2[i2];
472 double lp0 = (lp1-lp2) * (tx - tx2)/ ( tx1-tx2) + lp2;
475 double p0 = exp(lp0)/(1. + exp(lp0) );
487 }
else if (A2 < 2.) {
488 pvalue = std::pow(A2, -0.5) * std::exp(-1.2337141 / A2) * (2.00012 + (0.247105 - (0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * A2) * A2) * A2) * A2) * A2);
490 pvalue = std::exp(-1. * std::exp(1.0776 - (2.30695 - (0.43424 - (.082433 - (0.008056 - 0.0003146 * A2) * A2) * A2) * A2) * A2));
524 for (i = 0; i <
n; i++) {
538 for (i = 0; i <
n; i++) {
546void adkTestStat(
double *adk,
const std::vector<std::vector<double> > & samples,
const std::vector<double> & zstar) {
552 int k = samples.size();
553 int l = zstar.size();
557 std::vector<int> fij (k*
l);
561 std::vector<int> lvec(
l);
579 std::vector<int> ns(k);
581 for (i = 0; i < k; i++) {
582 ns[i] = samples[i].size();
590 for (j = 0; j <
l; j++) {
592 for (i = 0; i < k; i++) {
593 fij[i + j*k] =
getCount(zstar[j], &samples[i][0], ns[i]);
594 lvec[j] += fij[i + j*k];
601 for (i = 0; i < k; i++) {
607 for (j = 0; j <
l; j++) {
609 maij = mij - (
double) fij[i + j*k] / 2.0;
610 bj =
getSum(&lvec[0], j + 1);
611 baj = bj - (
double) lvec[j] / 2.0;
614 tmp = (
double) nsum * mij - (
double) ns[i] * bj;
615 innerSum = innerSum + (
double) lvec[j] * tmp * tmp /
616 (bj * ((
double) nsum - bj));
619 tmp = (
double) nsum * maij - (
double) ns[i] * baj;
620 aInnerSum = aInnerSum + (
double) lvec[j] * tmp * tmp /
621 (baj * (nsum - baj) - nsum * (
double) lvec[j] / 4.0);
624 adk[0] = adk[0] + innerSum / ns[i];
625 adk[1] = adk[1] + aInnerSum / ns[i];
631 adk[0] = adk[0] / (
double) nsum;
632 adk[1] = (nsum - 1) * adk[1] / ((
double) nsum * (
double) nsum);
650 MATH_ERROR_MSG(
"AndersonDarling2SamplesTest",
"Only 1-sample tests can be issued with a 1-sample constructed GoFTest object!");
656 std::vector<Double_t>::iterator endUnique = std::unique(z.begin(), z.end());
657 z.erase(endUnique, z.end() );
658 std::vector<size_t>
h;
659 std::vector<Double_t>
H;
667 unsigned int nSamples =
fSamples.size();
670 for (std::vector<Double_t>::iterator
data = z.begin();
data != endUnique; ++
data) {
674 std::bind(std::less<Double_t>(), std::placeholders::_1, *
data)) +
n / 2.);
676 std::cout <<
"time for H";
678 w.Reset();
w.Start();
679 std::vector<std::vector<Double_t> >
F(nSamples);
680 for (
size_t i = 0; i < nSamples; ++i) {
681 for (std::vector<Double_t>::iterator
data = z.begin();
data != endUnique; ++
data) {
684 std::bind(std::less<Double_t>(), std::placeholders::_1, *
data)) +
n / 2.);
687 std::cout <<
"time for F";
689 for (
size_t i = 0; i < nSamples; ++i) {
692 w.Reset();
w.Start();
693 for (std::vector<Double_t>::iterator
data = z.begin();
data != endUnique; ++
data) {
697 std::cout <<
"time for sum_result";
699 std::cout <<
"sum_result " << sum_result << std::endl;
700 A2 += 1.0 /
fSamples[i].size() * sum_result;
704 std::cout <<
"A2 - old Bartolomeo code " << A2 << std::endl;
709 double adk[2] = {0,0};
731 std::vector<size_t> ns(
fSamples.size());
732 for (
unsigned int k = 0; k < ns.size(); ++k) ns[k] =
fSamples[k].
size();
759 if (data1.
NDim() != 1 && data2.
NDim() != 1) {
760 MATH_ERROR_MSG(
"AndersonDarling2SamplesTest",
"Bin Data set must be one-dimensional ");
763 unsigned int n1 = data1.
Size();
764 unsigned int n2 = data2.
Size();
770 std::vector<double> xdata(n1+n2);
771 for (
unsigned int i = 0; i < n1; ++i) {
777 for (
unsigned int i = 0; i < n2; ++i) {
783 double nall = ntot1+ntot2;
785 std::vector<unsigned int>
index(n1+n2);
798 double x = xdata[
index[j] ];
803 unsigned int i =
index[k];
820 }
while ( k < n1+n2 && xdata[
index[k] ] ==
x );
826 double tmp1 = ( nall * sum1 - ntot1 * sumAll );
827 double tmp2 = ( nall * sum2 - ntot2 * sumAll );
828 adsum += t * (tmp1*tmp1/ntot1 + tmp2*tmp2/ntot2) / ( sumAll * (nall - sumAll) ) ;
833 double A2 = adsum / nall;
836 std::vector<size_t> ns(2);
857 return (strncmp(
option,
"p", 1) == 0 || strncmp(
option,
"t", 1) != 0) ? pvalue : testStat;
866 MATH_ERROR_MSG(
"AndersonDarlingTest",
"Only 2-sample tests can be issued with a 2-sample constructed GoFTest object!");
870 MATH_ERROR_MSG(
"AndersonDarlingTest",
"Distribution type is undefined! Please use SetDistribution(GoFTest::EDistribution).");
875 for (
Int_t i = 0; i <
n ; ++i) {
883 MATH_ERROR_MSG(
"AndersonDarlingTest",
"Cannot compute p-value: data below or above the distribution's thresholds. Check sample consistency.");
893 return (strncmp(
option,
"p", 1) == 0 || strncmp(
option,
"t", 1) != 0) ? pvalue : testStat;
900 MATH_ERROR_MSG(
"KolmogorovSmirnov2SamplesTest",
"Only 1-sample tests can be issued with a 1-sample constructed GoFTest object!");
903 const size_t na =
fSamples[0].size();
904 const size_t nb =
fSamples[1].size();
905 std::vector<Double_t>
a(na);
906 std::vector<Double_t>
b(nb);
916 return (strncmp(
option,
"p", 1) == 0 || strncmp(
option,
"t", 1) != 0) ? pvalue : testStat;
925 MATH_ERROR_MSG(
"KolmogorovSmirnovTest",
"Only 2-sample tests can be issued with a 2-sample constructed GoFTest object!");
929 MATH_ERROR_MSG(
"KolmogorovSmirnovTest",
"Distribution type is undefined! Please use SetDistribution(GoFTest::EDistribution).");
934 for (
size_t i = 0; i <
n; ++i) {
948 return (strncmp(
option,
"p", 1) == 0 || strncmp(
option,
"t", 1) != 0) ? pvalue : testStat;
#define MATH_ERROR_MSG(loc, str)
#define MATH_WARN_MSG(loc, str)
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h offset
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char x1
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
const double * GetPoint(unsigned int ipoint, double &value) const
retrieve at the same time a pointer to the coordinate data and the fit value More efficient than call...
double Value(unsigned int ipoint) const
return the value for the given fit point
unsigned int Size() const
return number of fit points
unsigned int NDim() const
return coordinate data dimension
static Double_t GetSigmaN(const std::vector< size_t > &ns, size_t N)
Computation of sigma_N as described in (1)
void operator()(ETestType test, Double_t &pvalue, Double_t &testStat) const
The class's unary functions performing the gif test according to the ETestType provided.
void SetDistributionFunction(const IGenFunction &cdf, Bool_t isPDF, Double_t xmin, Double_t xmax)
std::unique_ptr< IGenFunction > fCDF
Pointer to CDF used in 1-sample test.
EDistribution
H0 distributions for using only with 1-sample tests.
@ kLogNormal
Gaussian distribution with default mean=0, sigma=1.
@ kExponential
Lognormal distribution with default meanlog=0, sigmalog=1.
@ kGaussian
For internal use only within the class's template constructor.
@ kUserDefined
Default value for non templated 1-sample test. Set with SetDistribution.
EDistribution fDist
Type of distribution.
void Instantiate(const Double_t *sample, size_t sampleSize)
std::vector< Double_t > fCombinedSamples
The combined data.
void KolmogorovSmirnovTest(Double_t &pvalue, Double_t &testStat) const
Kolmogorov-Smirnov 1-Sample Test.
std::vector< Double_t > fParams
The distribution parameters (e.g. fParams[0] = mean, fParams[1] = sigma for a Gaussian)
ETestType
Goodness of Fit test types for using with the class's unary functions as a shorthand for the in-built...
@ kKS
Anderson-Darling 2-Samples Test.
@ kKS2s
Kolmogorov-Smirnov Test.
@ kAD2s
Anderson-Darling Test. Default value.
void SetSamples(std::vector< const Double_t * > samples, const std::vector< size_t > samplesSizes)
set a vector of samples
static Double_t PValueADKSamples(size_t nsamples, Double_t A2)
Computation of the K-Sample Anderson-Darling Test's p-value as described in (1)
void LogSample()
Applies the logarithm to the sample when the specified distribution to test is LogNormal.
void SetDistribution(EDistribution dist, const std::vector< double > &distParams={})
Sets the distribution for the predefined distribution types and optionally its parameters for 1-sampl...
Double_t GaussianCDF(Double_t x) const
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Performs the Anderson-Darling 2-Sample Test.
GoFTest()
Disallowed default constructor.
void KolmogorovSmirnov2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Kolmogorov-Smirnov 2-Samples Test.
std::vector< std::vector< Double_t > > fSamples
The input data.
Double_t PValueAD1Sample(Double_t A2) const
Computation of the 1-Sample Anderson-Darling Test's p-value.
void AndersonDarlingTest(Double_t &pvalue, Double_t &testStat) const
Performs the Anderson-Darling 1-Sample Test.
Double_t ExponentialCDF(Double_t x) const
void SetParameters(const std::vector< double > ¶ms)
Sets the distribution parameters.
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
User Class for performing numerical integration of a function in one dimension.
double IntegralUp(const IGenFunction &f, double a)
evaluate the Integral of a function f over the semi-infinite interval (a,+inf)
void SetFunction(Function &f)
method to set the a generic integration function
double Integral(Function &f, double a, double b)
evaluate the Integral of a function f over the defined interval (a,b)
double IntegralLow(const IGenFunction &f, double b)
evaluate the Integral of a function f over the over the semi-infinite interval (-inf,...
PDFIntegral(const IGenFunction &pdf, Double_t xmin=0, Double_t xmax=-1)
Double_t DoEval(Double_t x) const override
implementation of the evaluation function. Must be implemented by derived classes
const IGenFunction * fPDF
IntegratorOneDim fIntegral
IGenFunction * Clone() const override
Clone a function.
Template class to wrap any member function of a class taking a double and returning a double in a 1D ...
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
double exponential_cdf(double x, double lambda, double x0=0)
Cumulative distribution function of the exponential distribution (lower tail).
Namespace for new Math classes and functions.
void adkTestStat(double *adk, const std::vector< std::vector< double > > &samples, const std::vector< double > &zstar)
int getCount(double z, const double *dat, int n)
int getSum(const int *x, int n)
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
Double_t KolmogorovTest(Int_t na, const Double_t *a, Int_t nb, const Double_t *b, Option_t *option)
Statistical test whether two one-dimensional sets of points are compatible with coming from the same ...
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Double_t Sqrt(Double_t x)
Returns the square root of x.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
CDFWrapper(const IGenFunction &cdf, Double_t xmin=0, Double_t xmax=-1)
Double_t DoEval(Double_t x) const override
implementation of the evaluation function. Must be implemented by derived classes
IGenFunction * Clone() const override
Clone a function.
const IGenFunction * fCDF
static uint64_t sum(uint64_t i)