Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
ClassificationPyTorch.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_pytorch
4## \notebook -nodraw
5## This tutorial shows how to do classification in TMVA with neural networks
6## trained with PyTorch.
7##
8## \macro_code
9##
10## \date 2020
11## \author Anirudh Dagar <anirudhdagar6@gmail.com> - IIT, Roorkee
12
13
14# PyTorch has to be imported before ROOT to avoid crashes because of clashing
15# std::regexp symbols that are exported by cppyy.
16# See also: https://github.com/wlav/cppyy/issues/227
17import torch
18from torch import nn
19
20from ROOT import TMVA, TFile, TCut, gROOT
21from subprocess import call
22from os.path import isfile
23
24
25# Setup TMVA
28
29# create factory without output file since it is not needed
30factory = TMVA.Factory('TMVAClassification',
31 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
32
33
34# Load data
35data = TFile.Open(str(gROOT.GetTutorialDir()) + '/tmva/data/tmva_class_example.root')
36signal = data.Get('TreeS')
37background = data.Get('TreeB')
38
39dataloader = TMVA.DataLoader('dataset')
40for branch in signal.GetListOfBranches():
42
43dataloader.AddSignalTree(signal, 1.0)
44dataloader.AddBackgroundTree(background, 1.0)
46 'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
47
48
49# Generate model
50
51# Define model
52model = nn.Sequential()
53model.add_module('linear_1', nn.Linear(in_features=4, out_features=64))
55model.add_module('linear_2', nn.Linear(in_features=64, out_features=2))
56model.add_module('softmax', nn.Softmax(dim=1))
57
58
59# Construct loss function and Optimizer.
60loss = torch.nn.MSELoss()
61optimizer = torch.optim.SGD
62
63
64# Define train function
65def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
66 trainer = optimizer(model.parameters(), lr=0.01)
67 schedule, schedulerSteps = scheduler
68 best_val = None
69
70 for epoch in range(num_epochs):
71 # Training Loop
72 # Set to train mode
74 running_train_loss = 0.0
75 running_val_loss = 0.0
76 for i, (X, y) in enumerate(train_loader):
78 output = model(X)
79 train_loss = criterion(output, y)
82
83 # print train statistics
84 running_train_loss += train_loss.item()
85 if i % 32 == 31: # print every 32 mini-batches
86 print("[{}, {}] train loss: {:.3f}".format(epoch+1, i+1, running_train_loss / 32))
87 running_train_loss = 0.0
88
89 if schedule:
90 schedule(optimizer, epoch, schedulerSteps)
91
92 # Validation Loop
93 # Set to eval mode
95 with torch.no_grad():
96 for i, (X, y) in enumerate(val_loader):
97 output = model(X)
98 val_loss = criterion(output, y)
99 running_val_loss += val_loss.item()
100
101 curr_val = running_val_loss / len(val_loader)
102 if save_best:
103 if best_val==None:
104 best_val = curr_val
105 best_val = save_best(model, curr_val, best_val)
106
107 # print val statistics per epoch
108 print("[{}] val loss: {:.3f}".format(epoch+1, curr_val))
109 running_val_loss = 0.0
110
111 print("Finished Training on {} Epochs!".format(epoch+1))
112
113 return model
114
115
116# Define predict function
117def predict(model, test_X, batch_size=32):
118 # Set to eval mode
119 model.eval()
120
121 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
122 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
123
124 predictions = []
125 with torch.no_grad():
126 for i, data in enumerate(test_loader):
127 X = data[0]
128 outputs = model(X)
129 predictions.append(outputs)
130 preds = torch.cat(predictions)
131
132 return preds.numpy()
133
134
135load_model_custom_objects = {"optimizer": optimizer, "criterion": loss, "train_func": train, "predict_func": predict}
136
137
138# Store model to file
139# Convert the model to torchscript before saving
140m = torch.jit.script(model)
141torch.jit.save(m, "modelClassification.pt")
142print(m)
143
144
145# Book methods
146factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
147 '!H:!V:Fisher:VarTransform=D,G')
148factory.BookMethod(dataloader, TMVA.Types.kPyTorch, 'PyTorch',
149 'H:!V:VarTransform=D,G:FilenameModel=modelClassification.pt:FilenameTrainedModel=trainedModelClassification.pt:NumEpochs=20:BatchSize=32')
150
151
152# Run training, test and evaluation
156
157
158# Plot ROC Curves
159roc = factory.GetROCCurve(dataloader)
160roc.SaveAs('ROC_ClassificationPyTorch.png')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
Definition TCut.h:25
This is the main MVA steering class.
Definition Factory.h:80