Classes | |
class | EncodeProcessDecode |
class | MLPGraphIndependent |
class | MLPGraphNetwork |
class | SofieGNN |
Functions | |
CopyData (input_data) | |
GenerateData () | |
get_graph_data_dict (num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1) | |
make_mlp_model () | |
PrintSofie (output, printShape=False) | |
RunGNet (inputGraphData) | |
Variables | |
c0 = ROOT.TCanvas() | |
c1 = c0.cd(1) | |
c2 = c0.cd(2) | |
core = ROOT.TMVA.Experimental.SOFIE.RModel_GNN.ParseFromMemory(ep_model._core._network, CoreGraphData, filename = "core") | |
CoreGraphData = get_graph_data_dict(num_nodes, num_edges, 2*LATENT_SIZE, 2*LATENT_SIZE, 2*LATENT_SIZE) | |
data = GenerateData() | |
list | dataSet = [] |
DecodeGraphData = get_graph_data_dict(num_nodes,num_edges, LATENT_SIZE, LATENT_SIZE, LATENT_SIZE) | |
decoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._decoder._network, DecodeGraphData, filename = "decoder") | |
edge_data | |
int | edge_size = 4 |
edgesG = outGnet[1].edges.numpy() | |
edgesS = np.asarray(outSofie[1].edge_data) | |
encoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._encoder._network, GraphData, filename = "encoder") | |
end = time.time() | |
endSC = time.time() | |
ep_model = EncodeProcessDecode() | |
g = out[1].globals.numpy() | |
global_data | |
int | global_size = 1 |
globG = outGnet[1].globals.numpy() | |
globS = np.asarray(outSofie[1].global_data) | |
gnet_data_i = utils_tf.data_dicts_to_graphs_tuple([graphData]) | |
list | gnetData = [] |
gnn = SofieGNN() | |
GraphData = get_graph_data_dict(num_nodes,num_edges, node_size, edge_size, global_size) | |
list | graphData = dataSet[i] |
hDe = ROOT.TH1D("hDe","Difference for edge data",100,1,0) | |
hDg = ROOT.TH1D("hDg","Difference for global data",100,1,0) | |
hDn = ROOT.TH1D("hDn","Difference for node data",100,1,0) | |
hG = ROOT.TH1D("hG","Result from graphnet",100,1,0) | |
hS = ROOT.TH1D("hS","Result from SOFIE",100,1,0) | |
input_core_graph_data = utils_tf.data_dicts_to_graphs_tuple([CoreGraphData]) | |
input_data = ROOT.TMVA.Experimental.SOFIE.GNN_Data() | |
input_graph_data = utils_tf.data_dicts_to_graphs_tuple([GraphData]) | |
int | LATENT_SIZE = 100 |
node_data | |
int | node_size = 4 |
nodesG = outGnet[1].nodes.numpy() | |
nodesS = np.asarray(outSofie[1].node_data) | |
int | num_edges = 20 |
int | NUM_LAYERS = 4 |
int | num_nodes = 5 |
int | numevts = 100 |
out = RunGNet(gnetData[i]) | |
outGnet = RunGNet(gnetData[i]) | |
output_gn = ep_model(input_graph_data, processing_steps) | |
output_transform = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._output_transform._network, DecodeGraphData, filename = "output_transform") | |
outSofie = gnn.infer(sofieData[i]) | |
int | processing_steps = 5 |
rec = np.array([0,0,0,0,1,1,1,2,2,3,1,2,3,4,2,3,4,3,4,4], dtype='int32') | |
receivers | |
senders | |
snd = np.array([1,2,3,4,2,3,4,3,4,4,0,0,0,0,1,1,1,2,2,3], dtype='int32') | |
list | sofieData = [] |
start = time.time() | |
start0 = time.time() | |
TMVA_SOFIE_GNN.CopyData | ( | input_data | ) |
Definition at line 143 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.GenerateData | ( | ) |
Definition at line 176 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.get_graph_data_dict | ( | num_nodes, | |
num_edges, | |||
NODE_FEATURE_SIZE = 2 , |
|||
EDGE_FEATURE_SIZE = 2 , |
|||
GLOBAL_FEATURE_SIZE = 1 |
|||
) |
Definition at line 22 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.make_mlp_model | ( | ) |
Definition at line 32 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.PrintSofie | ( | output, | |
printShape = False |
|||
) |
Definition at line 133 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.RunGNet | ( | inputGraphData | ) |
Definition at line 195 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.c0 = ROOT.TCanvas() |
Definition at line 243 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.c1 = c0.cd(1) |
Definition at line 245 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.c2 = c0.cd(2) |
Definition at line 278 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.core = ROOT.TMVA.Experimental.SOFIE.RModel_GNN.ParseFromMemory(ep_model._core._network, CoreGraphData, filename = "core") |
Definition at line 113 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.CoreGraphData = get_graph_data_dict(num_nodes, num_edges, 2*LATENT_SIZE, 2*LATENT_SIZE, 2*LATENT_SIZE) |
Definition at line 96 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.data = GenerateData() |
Definition at line 183 of file TMVA_SOFIE_GNN.py.
list TMVA_SOFIE_GNN.dataSet = [] |
Definition at line 181 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.DecodeGraphData = get_graph_data_dict(num_nodes,num_edges, LATENT_SIZE, LATENT_SIZE, LATENT_SIZE) |
Definition at line 100 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.decoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._decoder._network, DecodeGraphData, filename = "decoder") |
Definition at line 117 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.edge_data |
Definition at line 215 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.edge_size = 4 |
Definition at line 15 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.edgesG = outGnet[1].edges.numpy() |
Definition at line 259 of file TMVA_SOFIE_GNN.py.
Definition at line 260 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.encoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._encoder._network, GraphData, filename = "encoder") |
Definition at line 109 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.end = time.time() |
Definition at line 206 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.endSC = time.time() |
Definition at line 226 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.ep_model = EncodeProcessDecode() |
Definition at line 86 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.g = out[1].globals.numpy() |
Definition at line 203 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.global_data |
Definition at line 216 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.global_size = 1 |
Definition at line 16 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.globG = outGnet[1].globals.numpy() |
Definition at line 272 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.globS = np.asarray(outSofie[1].global_data) |
Definition at line 273 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.gnet_data_i = utils_tf.data_dicts_to_graphs_tuple([graphData]) |
Definition at line 191 of file TMVA_SOFIE_GNN.py.
list TMVA_SOFIE_GNN.gnetData = [] |
Definition at line 188 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.gnn = SofieGNN() |
Definition at line 231 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.GraphData = get_graph_data_dict(num_nodes,num_edges, node_size, edge_size, global_size) |
Definition at line 89 of file TMVA_SOFIE_GNN.py.
list TMVA_SOFIE_GNN.graphData = dataSet[i] |
Definition at line 190 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.hDe = ROOT.TH1D("hDe","Difference for edge data",100,1,0) |
Definition at line 252 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.hDg = ROOT.TH1D("hDg","Difference for global data",100,1,0) |
Definition at line 254 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.hDn = ROOT.TH1D("hDn","Difference for node data",100,1,0) |
Definition at line 253 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.hG = ROOT.TH1D("hG","Result from graphnet",100,1,0) |
Definition at line 200 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.hS = ROOT.TH1D("hS","Result from SOFIE",100,1,0) |
Definition at line 229 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.input_core_graph_data = utils_tf.data_dicts_to_graphs_tuple([CoreGraphData]) |
Definition at line 97 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.input_data = ROOT.TMVA.Experimental.SOFIE.GNN_Data() |
Definition at line 213 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.input_graph_data = utils_tf.data_dicts_to_graphs_tuple([GraphData]) |
Definition at line 92 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.LATENT_SIZE = 100 |
Definition at line 17 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.node_data |
Definition at line 214 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.node_size = 4 |
Definition at line 14 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.nodesG = outGnet[1].nodes.numpy() |
Definition at line 266 of file TMVA_SOFIE_GNN.py.
Definition at line 267 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.num_edges = 20 |
Definition at line 11 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.NUM_LAYERS = 4 |
Definition at line 18 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.num_nodes = 5 |
Definition at line 10 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.numevts = 100 |
Definition at line 180 of file TMVA_SOFIE_GNN.py.
Definition at line 202 of file TMVA_SOFIE_GNN.py.
Definition at line 258 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.output_gn = ep_model(input_graph_data, processing_steps) |
Definition at line 103 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.output_transform = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._output_transform._network, DecodeGraphData, filename = "output_transform") |
Definition at line 121 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.outSofie = gnn.infer(sofieData[i]) |
Definition at line 257 of file TMVA_SOFIE_GNN.py.
int TMVA_SOFIE_GNN.processing_steps = 5 |
Definition at line 19 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.rec = np.array([0,0,0,0,1,1,1,2,2,3,1,2,3,4,2,3,4,3,4,4], dtype='int32') |
Definition at line 13 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.receivers |
Definition at line 218 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.senders |
Definition at line 219 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.snd = np.array([1,2,3,4,2,3,4,3,4,4,0,0,0,0,1,1,1,2,2,3], dtype='int32') |
Definition at line 12 of file TMVA_SOFIE_GNN.py.
list TMVA_SOFIE_GNN.sofieData = [] |
Definition at line 210 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.start = time.time() |
Definition at line 199 of file TMVA_SOFIE_GNN.py.
TMVA_SOFIE_GNN.start0 = time.time() |
Definition at line 230 of file TMVA_SOFIE_GNN.py.