*********************************************************************************
Minuit
*********************************************************************************
pass : 0
................... FCN=205.276 FROM MINOS STATUS=SUCCESSFUL 44 CALLS 429 TOTAL
EDM=3.83288e-10 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 p0 5.13639e+01 2.01329e+00 -2.79418e-04 -2.05471e-06
2 p1 5.57813e+01 4.80582e+00 3.09127e-03 -9.98919e-07
3 p2 7.42112e+01 1.87041e+00 -1.20311e-03 -1.93173e-07
4 p3 4.27344e+02 2.93232e+00 -1.66243e-02 -7.80957e-07
5 p4 3.58604e-02 3.47005e-04 1.74159e-07 9.80777e-02
6 p5 1.00001e+00 1.64203e-04 1.64203e-04 3.19213e-02
Minuit, npass=20 : RT= 0.183 s, Cpu= 0.180 s
*********************************************************************************
Fumili
*********************************************************************************
pass : 0
...................****************************************
Minimizer is Fumili
Chi2 = 206.284
NDf = 194
NCalls = 4
p0 = 51.4325 +/- 2.01397
p1 = 55.5412 +/- 4.81253
p2 = 74.2976 +/- 1.87298
p3 = 427.425 +/- 2.93868
p4 = 0.0358559 +/- 0.000357243
p5 = 1.00001 +/- 0.00016009
Fumili, npass=20 : RT= 0.062 s, Cpu= 0.060 s
*********************************************************************************
Minuit2
*********************************************************************************
pass : 0
...................****************************************
Minimizer is Minuit2 / Migrad
Chi2 = 205.34
NDf = 194
Edm = 1.91398e-10
NCalls = 85
p0 = 51.3576 +/- 2.0133 -2.01329 +2.0133 (Minos)
p1 = 55.8172 +/- 4.80582 -4.80605 +4.80561 (Minos)
p2 = 74.1981 +/- 1.8704 -1.87032 +1.8705 (Minos)
p3 = 427.317 +/- 2.93218 -2.93197 +2.93246 (Minos)
p4 = 0.0358574 +/- 0.000346961 -0.000345228 +0.000348733 (Minos)
p5 = 1.00001 +/- 0.000164204 -0.000164437 +0.000163973 (Minos)
Minuit2, npass=20 : RT= 0.072 s, Cpu= 0.070 s
*********************************************************************************
Fumili2
*********************************************************************************
pass : 0
...................****************************************
Minimizer is Minuit2 / Fumili
Chi2 = 207.495
NDf = 194
Edm = 4.26421e-10
NCalls = 92
p0 = 51.4278 +/- 2.01381
p1 = 55.5389 +/- 4.8062
p2 = 74.3005 +/- 1.8705
p3 = 427.406 +/- 2.93236
p4 = 0.0358584 +/- 0.000346902
p5 = 1.00001 +/- 0.000164198
Fumili2, npass=20 : RT= 0.049 s, Cpu= 0.050 s
(int) 0
double background(
double *
x,
double *par) {
return par[0] + par[1]*
x[0] + par[2]*
x[0]*
x[0];
}
double lorentzianPeak(
double *
x,
double *par) {
TMath::Max( 1.e-10,(
x[0]-par[2])*(
x[0]-par[2]) + .25*par[1]*par[1]);
}
double fitFunction(
double *
x,
double *par) {
return background(
x,par) + lorentzianPeak(
x,&par[3]);
}
bool DoFit(
const char* fitter,
TVirtualPad *pad,
int npass) {
printf("\n*********************************************************************************\n");
printf("\t %s \n",fitter);
printf("*********************************************************************************\n");
std::string title = std::string(fitter) + " fit bench";
histo =
new TH1D(fitter,title.c_str(),200,0,3);
bool ok = true;
for (int pass=0;pass<npass;pass++) {
if (pass%100 == 0) printf("pass : %d\n",pass);
else printf(".");
for (int i=0;i<5000;i++) {
}
int iret = histo->
Fit(fitFcn,
"Q0");
ok &= (iret == 0);
if (iret!=0)
Error(
"DoFit",
"Fit pass %d failed !",pass);
}
if (!fitterType.Contains("Fumili"))
else
printf(
"%s, npass=%d : RT=%7.3f s, Cpu=%7.3f s\n",fitter,npass,timer.
RealTime(),cputime);
return ok;
}
int minuit2FitBench(int npass=20) {
fitFcn =
new TF1(
"fitFcn",fitFunction,0,3,6);
bool ok = true;
ok &= DoFit(
"Minuit",
gPad,npass);
ok &= DoFit(
"Fumili",
gPad,npass);
ok &= DoFit(
"Minuit2",
gPad,npass);
ok &= DoFit(
"Fumili2",
gPad,npass);
c1->SaveAs(
"FitBench.root");
return (ok) ? 0 : 1;
}
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t SetLineColor
R__EXTERN TRandom * gRandom
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
R__EXTERN TStyle * gStyle
static void SetDefaultMinimizer(const char *type, const char *algo=nullptr)
Set the default Minimizer type and corresponding algorithms.
virtual void Update()
Called by functions such as SetRange, SetNpx, SetParameters to force the deletion of the associated h...
virtual Double_t GetRandom(TRandom *rng=nullptr, Option_t *opt=nullptr)
Return a random number following this function shape.
virtual void SetNpx(Int_t npx=100)
Set the number of points used to draw the function.
virtual void SetParameters(const Double_t *params)
1-D histogram with a double per channel (see TH1 documentation)}
TH1 is the base class of all histogram classes in ROOT.
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
A Pave (see TPave) with a text centered in the Pave.
Random number generator class based on M.
Double_t RealTime()
Stop the stopwatch (if it is running) and return the realtime (in seconds) passed between the start a...
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
Double_t CpuTime()
Stop the stopwatch (if it is running) and return the cputime (in seconds) passed between the start an...
void Stop()
Stop the stopwatch.
void SetStatY(Float_t y=0)
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
TVirtualPad is an abstract base class for the Pad and Canvas classes.
virtual void SetGrid(Int_t valuex=1, Int_t valuey=1)=0
virtual void SetLogy(Int_t value=1)=0
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.