Tutorial for convolution of two functions
****************************************
Minimizer is Minuit2 / Migrad
Chi2 = 298.12
NDf = 96
Edm = 1.67196e-06
NCalls = 448
p0 = 7.32861 +/- 0.0370492
p1 = 0.0733018 +/- 0.00243973
p2 = -2.26418 +/- 0.0491372
p3 = 1.12808 +/- 0.0628185
{
TH1F *h_ExpGauss =
new TH1F(
"h_ExpGauss",
"Exponential convoluted by Gaussian", 100, 0., 5.);
for (int i = 0; i < 1e6; i++) {
}
f->SetParameters(1., -0.3, 0., 1.);
}
R__EXTERN TRandom * gRandom
Class wrapping convolution of two functions.
void SetRange(Double_t a, Double_t b) override
Set the actual range used for the convolution.
void SetNofPointsFFT(Int_t n)
Set the number of points used for the FFT convolution.
1-D histogram with a float per channel (see TH1 documentation)}
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
void Draw(Option_t *option="") override
Draw this histogram with options.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual Double_t Exp(Double_t tau)
Returns an exponential deviate.
- Author
- Aurelie Flandi
Definition in file fitConvolution.C.