DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sgn of type Signal with 2000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg of type Background with 2000 events
Factory : Booking method: ␛[1mTMVA_LSTM␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=10Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=10Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "10|30" [The Layout of the input]
: Layout: "LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: RandomSeed: "1234" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "0.2" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=10Optimizer=ADAM,DropConfig=0.0+0.+0.+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_DNN␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|1|300" [The Layout of the input]
: Layout: "DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Running with nthreads = 4
--- RNNClassification : Using input file: time_data_t10_d30.root
number of variables is 300
vars_time0[0]
vars_time0[1]
vars_time0[2]
vars_time0[3]
vars_time0[4]
vars_time0[5]
vars_time0[6]
vars_time0[7]
vars_time0[8]
vars_time0[9]
vars_time0[10]
vars_time0[11]
vars_time0[12]
vars_time0[13]
vars_time0[14]
vars_time0[15]
vars_time0[16]
vars_time0[17]
vars_time0[18]
vars_time0[19]
vars_time0[20]
vars_time0[21]
vars_time0[22]
vars_time0[23]
vars_time0[24]
vars_time0[25]
vars_time0[26]
vars_time0[27]
vars_time0[28]
vars_time0[29]
vars_time1[0]
vars_time1[1]
vars_time1[2]
vars_time1[3]
vars_time1[4]
vars_time1[5]
vars_time1[6]
vars_time1[7]
vars_time1[8]
vars_time1[9]
vars_time1[10]
vars_time1[11]
vars_time1[12]
vars_time1[13]
vars_time1[14]
vars_time1[15]
vars_time1[16]
vars_time1[17]
vars_time1[18]
vars_time1[19]
vars_time1[20]
vars_time1[21]
vars_time1[22]
vars_time1[23]
vars_time1[24]
vars_time1[25]
vars_time1[26]
vars_time1[27]
vars_time1[28]
vars_time1[29]
vars_time2[0]
vars_time2[1]
vars_time2[2]
vars_time2[3]
vars_time2[4]
vars_time2[5]
vars_time2[6]
vars_time2[7]
vars_time2[8]
vars_time2[9]
vars_time2[10]
vars_time2[11]
vars_time2[12]
vars_time2[13]
vars_time2[14]
vars_time2[15]
vars_time2[16]
vars_time2[17]
vars_time2[18]
vars_time2[19]
vars_time2[20]
vars_time2[21]
vars_time2[22]
vars_time2[23]
vars_time2[24]
vars_time2[25]
vars_time2[26]
vars_time2[27]
vars_time2[28]
vars_time2[29]
vars_time3[0]
vars_time3[1]
vars_time3[2]
vars_time3[3]
vars_time3[4]
vars_time3[5]
vars_time3[6]
vars_time3[7]
vars_time3[8]
vars_time3[9]
vars_time3[10]
vars_time3[11]
vars_time3[12]
vars_time3[13]
vars_time3[14]
vars_time3[15]
vars_time3[16]
vars_time3[17]
vars_time3[18]
vars_time3[19]
vars_time3[20]
vars_time3[21]
vars_time3[22]
vars_time3[23]
vars_time3[24]
vars_time3[25]
vars_time3[26]
vars_time3[27]
vars_time3[28]
vars_time3[29]
vars_time4[0]
vars_time4[1]
vars_time4[2]
vars_time4[3]
vars_time4[4]
vars_time4[5]
vars_time4[6]
vars_time4[7]
vars_time4[8]
vars_time4[9]
vars_time4[10]
vars_time4[11]
vars_time4[12]
vars_time4[13]
vars_time4[14]
vars_time4[15]
vars_time4[16]
vars_time4[17]
vars_time4[18]
vars_time4[19]
vars_time4[20]
vars_time4[21]
vars_time4[22]
vars_time4[23]
vars_time4[24]
vars_time4[25]
vars_time4[26]
vars_time4[27]
vars_time4[28]
vars_time4[29]
vars_time5[0]
vars_time5[1]
vars_time5[2]
vars_time5[3]
vars_time5[4]
vars_time5[5]
vars_time5[6]
vars_time5[7]
vars_time5[8]
vars_time5[9]
vars_time5[10]
vars_time5[11]
vars_time5[12]
vars_time5[13]
vars_time5[14]
vars_time5[15]
vars_time5[16]
vars_time5[17]
vars_time5[18]
vars_time5[19]
vars_time5[20]
vars_time5[21]
vars_time5[22]
vars_time5[23]
vars_time5[24]
vars_time5[25]
vars_time5[26]
vars_time5[27]
vars_time5[28]
vars_time5[29]
vars_time6[0]
vars_time6[1]
vars_time6[2]
vars_time6[3]
vars_time6[4]
vars_time6[5]
vars_time6[6]
vars_time6[7]
vars_time6[8]
vars_time6[9]
vars_time6[10]
vars_time6[11]
vars_time6[12]
vars_time6[13]
vars_time6[14]
vars_time6[15]
vars_time6[16]
vars_time6[17]
vars_time6[18]
vars_time6[19]
vars_time6[20]
vars_time6[21]
vars_time6[22]
vars_time6[23]
vars_time6[24]
vars_time6[25]
vars_time6[26]
vars_time6[27]
vars_time6[28]
vars_time6[29]
vars_time7[0]
vars_time7[1]
vars_time7[2]
vars_time7[3]
vars_time7[4]
vars_time7[5]
vars_time7[6]
vars_time7[7]
vars_time7[8]
vars_time7[9]
vars_time7[10]
vars_time7[11]
vars_time7[12]
vars_time7[13]
vars_time7[14]
vars_time7[15]
vars_time7[16]
vars_time7[17]
vars_time7[18]
vars_time7[19]
vars_time7[20]
vars_time7[21]
vars_time7[22]
vars_time7[23]
vars_time7[24]
vars_time7[25]
vars_time7[26]
vars_time7[27]
vars_time7[28]
vars_time7[29]
vars_time8[0]
vars_time8[1]
vars_time8[2]
vars_time8[3]
vars_time8[4]
vars_time8[5]
vars_time8[6]
vars_time8[7]
vars_time8[8]
vars_time8[9]
vars_time8[10]
vars_time8[11]
vars_time8[12]
vars_time8[13]
vars_time8[14]
vars_time8[15]
vars_time8[16]
vars_time8[17]
vars_time8[18]
vars_time8[19]
vars_time8[20]
vars_time8[21]
vars_time8[22]
vars_time8[23]
vars_time8[24]
vars_time8[25]
vars_time8[26]
vars_time8[27]
vars_time8[28]
vars_time8[29]
vars_time9[0]
vars_time9[1]
vars_time9[2]
vars_time9[3]
vars_time9[4]
vars_time9[5]
vars_time9[6]
vars_time9[7]
vars_time9[8]
vars_time9[9]
vars_time9[10]
vars_time9[11]
vars_time9[12]
vars_time9[13]
vars_time9[14]
vars_time9[15]
vars_time9[16]
vars_time9[17]
vars_time9[18]
vars_time9[19]
vars_time9[20]
vars_time9[21]
vars_time9[22]
vars_time9[23]
vars_time9[24]
vars_time9[25]
vars_time9[26]
vars_time9[27]
vars_time9[28]
vars_time9[29]
prepared DATA LOADER
Building recurrent keras model using a LSTM layer
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 10, 30) 0
lstm (LSTM) (None, 10, 10) 1640
flatten (Flatten) (None, 100) 0
dense (Dense) (None, 64) 6464
dense_1 (Dense) (None, 2) 130
=================================================================
Total params: 8234 (32.16 KB)
Trainable params: 8234 (32.16 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
Factory : Booking method: ␛[1mPyKeras_LSTM␛[0m
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Loading Keras Model
: Loaded model from file: model_LSTM.h5
Factory : Booking method: ␛[1mBDTG␛[0m
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sgn
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1600
: Signal -- testing events : 400
: Signal -- training and testing events: 2000
: Background -- training events : 1600
: Background -- testing events : 400
: Background -- training and testing events: 2000
:
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: TMVA_LSTM for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 10, 1, 30 ) Batch size = 100 Loss function = C
Layer 0 LSTM Layer: (NInput = 30, NState = 10, NTime = 10 ) Output = ( 100 , 10 , 10 )
Layer 1 RESHAPE Layer Input = ( 1 , 10 , 10 ) Output = ( 1 , 100 , 100 )
Layer 2 DENSE Layer: ( Input = 100 , Width = 64 ) Output = ( 1 , 100 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.719534
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.696578 0.703988 0.611048 0.0409296 4385.05 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.688852 0.7008 0.630306 0.0416511 4246.97 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.683903 0.698644 0.628612 0.0417046 4259.62 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.677747 0.690606 0.625369 0.0415403 4282.08 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.670178 0.679521 0.618175 0.0401115 4324.78 0
: 6 | 0.652901 0.680636 0.617592 0.040969 4335.59 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.632044 0.667283 0.622327 0.0410219 4300.67 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.622784 0.65771 0.613341 0.0409525 4367.66 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.608428 0.647322 0.617688 0.0411605 4336.31 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.602143 0.633309 0.631084 0.043506 4254.75 0
:
: Elapsed time for training with 3200 events: 6.27 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.22 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_DNN for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 300 ) Batch size = 256 Loss function = C
Layer 0 DENSE Layer: ( Input = 300 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 2 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 256 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 1.29263
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.840798 0.723137 0.190832 0.0155441 14604.6 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.709326 0.687181 0.190104 0.0153992 14653.3 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.6878 0.681654 0.190083 0.0155046 14663.9 0
: 4 | 0.688285 0.694187 0.193156 0.015329 14396 1
: 5 | 0.684774 0.691184 0.189708 0.0150594 14658 2
: 6 Minimum Test error found - save the configuration
: 6 | 0.673896 0.676131 0.189008 0.0153248 14739.5 0
: 7 | 0.667901 0.679692 0.190344 0.0152531 14621 1
: 8 | 0.656182 0.685182 0.191455 0.0150338 14510.7 2
: 9 | 0.67325 0.684271 0.188755 0.0150127 14734.5 3
: 10 | 0.665383 0.682526 0.188749 0.0153893 14767 4
: 11 | 0.660624 0.678689 0.190383 0.015379 14628.3 5
: 12 Minimum Test error found - save the configuration
: 12 | 0.661528 0.671888 0.189436 0.0153273 14703.5 0
: 13 Minimum Test error found - save the configuration
: 13 | 0.663089 0.654097 0.190698 0.015352 14599.7 0
: 14 | 0.653147 0.66141 0.191471 0.0149441 14502.1 1
: 15 Minimum Test error found - save the configuration
: 15 | 0.656297 0.65246 0.18997 0.0163999 14749 0
: 16 | 0.651177 0.665984 0.190703 0.0150778 14576.5 1
: 17 | 0.655493 0.664008 0.191923 0.0154808 14509 2
: 18 | 0.655905 0.661734 0.189666 0.014982 14655 3
: 19 | 0.639954 0.660145 0.190785 0.0150711 14569.2 4
: 20 | 0.646707 0.659875 0.189643 0.015296 14683.3 5
:
: Elapsed time for training with 3200 events: 3.82 sec
: Evaluate deep neural network on CPU using batches with size = 256
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.101 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyKeras_LSTM for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyKeras_LSTM ] :␛[0m
:
: Keras is a high-level API for the Theano and Tensorflow packages.
: This method wraps the training and predictions steps of the Keras
: Python package for TMVA, so that dataloading, preprocessing and
: evaluation can be done within the TMVA system. To use this Keras
: interface, you have to generate a model with Keras first. Then,
: this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 2560 training events and 640 validation events
: Training Model Summary
saved recurrent model model_LSTM.h5
Booking Keras model LSTM
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 10, 30) 0
lstm (LSTM) (None, 10, 10) 1640
flatten (Flatten) (None, 100) 0
dense (Dense) (None, 64) 6464
dense_1 (Dense) (None, 2) 130
=================================================================
Total params: 8234 (32.16 KB)
Trainable params: 8234 (32.16 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
Epoch 1/10
1/26 [>.............................] - ETA: 41s - loss: 0.7218 - accuracy: 0.5100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
7/26 [=======>......................] - ETA: 0s - loss: 0.7207 - accuracy: 0.4829 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
14/26 [===============>..............] - ETA: 0s - loss: 0.7190 - accuracy: 0.4886␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
23/26 [=========================>....] - ETA: 0s - loss: 0.7131 - accuracy: 0.4952
Epoch 1: val_loss improved from inf to 0.69740, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 3s 37ms/step - loss: 0.7117 - accuracy: 0.4992 - val_loss: 0.6974 - val_accuracy: 0.5188
Epoch 2/10
1/26 [>.............................] - ETA: 0s - loss: 0.6691 - accuracy: 0.5800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
10/26 [==========>...................] - ETA: 0s - loss: 0.6752 - accuracy: 0.5990␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
18/26 [===================>..........] - ETA: 0s - loss: 0.6794 - accuracy: 0.5900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - ETA: 0s - loss: 0.6779 - accuracy: 0.5887
Epoch 2: val_loss improved from 0.69740 to 0.66548, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 9ms/step - loss: 0.6779 - accuracy: 0.5887 - val_loss: 0.6655 - val_accuracy: 0.6187
Epoch 3/10
1/26 [>.............................] - ETA: 0s - loss: 0.6477 - accuracy: 0.6700␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
10/26 [==========>...................] - ETA: 0s - loss: 0.6560 - accuracy: 0.6270␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
18/26 [===================>..........] - ETA: 0s - loss: 0.6592 - accuracy: 0.6133
Epoch 3: val_loss improved from 0.66548 to 0.64295, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 9ms/step - loss: 0.6557 - accuracy: 0.6164 - val_loss: 0.6429 - val_accuracy: 0.6422
Epoch 4/10
1/26 [>.............................] - ETA: 0s - loss: 0.5914 - accuracy: 0.7400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
10/26 [==========>...................] - ETA: 0s - loss: 0.6458 - accuracy: 0.6400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
18/26 [===================>..........] - ETA: 0s - loss: 0.6448 - accuracy: 0.6339
Epoch 4: val_loss improved from 0.64295 to 0.62346, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 9ms/step - loss: 0.6411 - accuracy: 0.6359 - val_loss: 0.6235 - val_accuracy: 0.6562
Epoch 5/10
1/26 [>.............................] - ETA: 0s - loss: 0.5639 - accuracy: 0.7400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
10/26 [==========>...................] - ETA: 0s - loss: 0.6143 - accuracy: 0.6790␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
21/26 [=======================>......] - ETA: 0s - loss: 0.6106 - accuracy: 0.6790
Epoch 5: val_loss improved from 0.62346 to 0.61124, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 10ms/step - loss: 0.6117 - accuracy: 0.6719 - val_loss: 0.6112 - val_accuracy: 0.6703
Epoch 6/10
1/26 [>.............................] - ETA: 0s - loss: 0.6049 - accuracy: 0.7100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.5860 - accuracy: 0.6936␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.5867 - accuracy: 0.6923
Epoch 6: val_loss improved from 0.61124 to 0.58893, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.5852 - accuracy: 0.6906 - val_loss: 0.5889 - val_accuracy: 0.6906
Epoch 7/10
1/26 [>.............................] - ETA: 0s - loss: 0.5695 - accuracy: 0.7000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.5641 - accuracy: 0.7100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
23/26 [=========================>....] - ETA: 0s - loss: 0.5648 - accuracy: 0.7039
Epoch 7: val_loss improved from 0.58893 to 0.56777, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.5640 - accuracy: 0.7035 - val_loss: 0.5678 - val_accuracy: 0.7188
Epoch 8/10
1/26 [>.............................] - ETA: 0s - loss: 0.5691 - accuracy: 0.7000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.5495 - accuracy: 0.7225␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
23/26 [=========================>....] - ETA: 0s - loss: 0.5414 - accuracy: 0.7226
Epoch 8: val_loss improved from 0.56777 to 0.55948, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.5441 - accuracy: 0.7215 - val_loss: 0.5595 - val_accuracy: 0.7250
Epoch 9/10
1/26 [>.............................] - ETA: 0s - loss: 0.5110 - accuracy: 0.7400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.5323 - accuracy: 0.7208␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.5312 - accuracy: 0.7300
Epoch 9: val_loss improved from 0.55948 to 0.53259, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.5251 - accuracy: 0.7363 - val_loss: 0.5326 - val_accuracy: 0.7406
Epoch 10/10
1/26 [>.............................] - ETA: 0s - loss: 0.4742 - accuracy: 0.7500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.4863 - accuracy: 0.7717␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.5057 - accuracy: 0.7532
Epoch 10: val_loss improved from 0.53259 to 0.52076, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.4996 - accuracy: 0.7586 - val_loss: 0.5208 - val_accuracy: 0.7344
: Getting training history for item:0 name = 'loss'
: Getting training history for item:1 name = 'accuracy'
: Getting training history for item:2 name = 'val_loss'
: Getting training history for item:3 name = 'val_accuracy'
: Elapsed time for training with 3200 events: 4.65 sec
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_LSTM.h5
PyKeras_LSTM : [dataset] : Evaluation of PyKeras_LSTM on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.255 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_PyKeras_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_PyKeras_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: BDTG for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ BDTG ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: Boosted Decision Trees are a collection of individual decision
: trees which form a multivariate classifier by (weighted) majority
: vote of the individual trees. Consecutive decision trees are
: trained using the original training data set with re-weighted
: events. By default, the AdaBoost method is employed, which gives
: events that were misclassified in the previous tree a larger
: weight in the training of the following tree.
:
: Decision trees are a sequence of binary splits of the data sample
: using a single discriminant variable at a time. A test event
: ending up after the sequence of left-right splits in a final
: ("leaf") node is classified as either signal or background
: depending on the majority type of training events in that node.
:
: ␛[1m--- Performance optimisation:␛[0m
:
: By the nature of the binary splits performed on the individual
: variables, decision trees do not deal well with linear correlations
: between variables (they need to approximate the linear split in
: the two dimensional space by a sequence of splits on the two
: variables individually). Hence decorrelation could be useful
: to optimise the BDT performance.
:
: ␛[1m--- Performance tuning via configuration options:␛[0m
:
: The two most important parameters in the configuration are the
: minimal number of events requested by a leaf node as percentage of the
: number of training events (option "MinNodeSize" replacing the actual number
: of events "nEventsMin" as given in earlier versions
: If this number is too large, detailed features
: in the parameter space are hard to be modelled. If it is too small,
: the risk to overtrain rises and boosting seems to be less effective
: typical values from our current experience for best performance
: are between 0.5(%) and 10(%)
:
: The default minimal number is currently set to
: max(20, (N_training_events / N_variables^2 / 10))
: and can be changed by the user.
:
: The other crucial parameter, the pruning strength ("PruneStrength"),
: is also related to overtraining. It is a regularisation parameter
: that is used when determining after the training which splits
: are considered statistically insignificant and are removed. The
: user is advised to carefully watch the BDT screen output for
: the comparison between efficiencies obtained on the training and
: the independent test sample. They should be equal within statistical
: errors, in order to minimize statistical fluctuations in different samples.
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
BDTG : #events: (reweighted) sig: 1600 bkg: 1600
: #events: (unweighted) sig: 1600 bkg: 1600
: Training 100 Decision Trees ... patience please
: Elapsed time for training with 3200 events: 1.61 sec
BDTG : [dataset] : Evaluation of BDTG on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.0185 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_BDTG.class.C␛[0m
: data_RNN_CPU.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: TMVA_LSTM
: No variable ranking supplied by classifier: TMVA_DNN
: No variable ranking supplied by classifier: PyKeras_LSTM
BDTG : Ranking result (top variable is best ranked)
: --------------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------------
: 1 : vars_time8 : 2.327e-02
: 2 : vars_time8 : 2.320e-02
: 3 : vars_time9 : 2.192e-02
: 4 : vars_time9 : 2.073e-02
: 5 : vars_time7 : 2.027e-02
: 6 : vars_time8 : 1.907e-02
: 7 : vars_time6 : 1.891e-02
: 8 : vars_time6 : 1.758e-02
: 9 : vars_time9 : 1.732e-02
: 10 : vars_time8 : 1.713e-02
: 11 : vars_time7 : 1.690e-02
: 12 : vars_time7 : 1.689e-02
: 13 : vars_time6 : 1.630e-02
: 14 : vars_time9 : 1.611e-02
: 15 : vars_time7 : 1.565e-02
: 16 : vars_time9 : 1.552e-02
: 17 : vars_time7 : 1.537e-02
: 18 : vars_time5 : 1.523e-02
: 19 : vars_time6 : 1.501e-02
: 20 : vars_time5 : 1.479e-02
: 21 : vars_time6 : 1.467e-02
: 22 : vars_time8 : 1.463e-02
: 23 : vars_time0 : 1.330e-02
: 24 : vars_time1 : 1.309e-02
: 25 : vars_time8 : 1.290e-02
: 26 : vars_time6 : 1.274e-02
: 27 : vars_time5 : 1.271e-02
: 28 : vars_time7 : 1.243e-02
: 29 : vars_time6 : 1.235e-02
: 30 : vars_time0 : 1.178e-02
: 31 : vars_time6 : 1.128e-02
: 32 : vars_time9 : 1.061e-02
: 33 : vars_time5 : 1.058e-02
: 34 : vars_time7 : 1.050e-02
: 35 : vars_time7 : 1.013e-02
: 36 : vars_time8 : 9.930e-03
: 37 : vars_time5 : 9.705e-03
: 38 : vars_time0 : 9.502e-03
: 39 : vars_time9 : 9.456e-03
: 40 : vars_time9 : 9.441e-03
: 41 : vars_time6 : 9.340e-03
: 42 : vars_time3 : 9.331e-03
: 43 : vars_time5 : 9.299e-03
: 44 : vars_time1 : 9.284e-03
: 45 : vars_time9 : 9.086e-03
: 46 : vars_time7 : 8.823e-03
: 47 : vars_time5 : 8.816e-03
: 48 : vars_time4 : 8.691e-03
: 49 : vars_time4 : 8.421e-03
: 50 : vars_time9 : 8.172e-03
: 51 : vars_time7 : 7.828e-03
: 52 : vars_time0 : 7.774e-03
: 53 : vars_time6 : 7.653e-03
: 54 : vars_time9 : 7.600e-03
: 55 : vars_time9 : 7.253e-03
: 56 : vars_time9 : 7.251e-03
: 57 : vars_time1 : 7.181e-03
: 58 : vars_time9 : 7.093e-03
: 59 : vars_time8 : 7.066e-03
: 60 : vars_time9 : 7.052e-03
: 61 : vars_time7 : 6.999e-03
: 62 : vars_time7 : 6.983e-03
: 63 : vars_time3 : 6.673e-03
: 64 : vars_time0 : 6.589e-03
: 65 : vars_time4 : 6.497e-03
: 66 : vars_time7 : 6.468e-03
: 67 : vars_time5 : 6.444e-03
: 68 : vars_time6 : 6.342e-03
: 69 : vars_time0 : 6.263e-03
: 70 : vars_time3 : 6.220e-03
: 71 : vars_time7 : 6.170e-03
: 72 : vars_time6 : 6.031e-03
: 73 : vars_time1 : 6.026e-03
: 74 : vars_time7 : 6.026e-03
: 75 : vars_time5 : 6.018e-03
: 76 : vars_time7 : 5.978e-03
: 77 : vars_time8 : 5.958e-03
: 78 : vars_time0 : 5.947e-03
: 79 : vars_time1 : 5.830e-03
: 80 : vars_time5 : 5.822e-03
: 81 : vars_time8 : 5.782e-03
: 82 : vars_time9 : 5.777e-03
: 83 : vars_time1 : 5.667e-03
: 84 : vars_time8 : 5.616e-03
: 85 : vars_time2 : 5.605e-03
: 86 : vars_time9 : 5.537e-03
: 87 : vars_time4 : 5.460e-03
: 88 : vars_time7 : 5.394e-03
: 89 : vars_time0 : 5.388e-03
: 90 : vars_time8 : 5.384e-03
: 91 : vars_time8 : 5.266e-03
: 92 : vars_time0 : 5.237e-03
: 93 : vars_time3 : 4.967e-03
: 94 : vars_time1 : 4.574e-03
: 95 : vars_time9 : 4.509e-03
: 96 : vars_time3 : 4.490e-03
: 97 : vars_time8 : 4.411e-03
: 98 : vars_time1 : 4.289e-03
: 99 : vars_time0 : 4.201e-03
: 100 : vars_time6 : 3.827e-03
: 101 : vars_time0 : 3.719e-03
: 102 : vars_time2 : 3.718e-03
: 103 : vars_time5 : 3.706e-03
: 104 : vars_time2 : 3.658e-03
: 105 : vars_time5 : 3.528e-03
: 106 : vars_time1 : 3.068e-03
: 107 : vars_time0 : 0.000e+00
: 108 : vars_time0 : 0.000e+00
: 109 : vars_time0 : 0.000e+00
: 110 : vars_time0 : 0.000e+00
: 111 : vars_time0 : 0.000e+00
: 112 : vars_time0 : 0.000e+00
: 113 : vars_time0 : 0.000e+00
: 114 : vars_time0 : 0.000e+00
: 115 : vars_time0 : 0.000e+00
: 116 : vars_time0 : 0.000e+00
: 117 : vars_time0 : 0.000e+00
: 118 : vars_time0 : 0.000e+00
: 119 : vars_time0 : 0.000e+00
: 120 : vars_time0 : 0.000e+00
: 121 : vars_time0 : 0.000e+00
: 122 : vars_time0 : 0.000e+00
: 123 : vars_time0 : 0.000e+00
: 124 : vars_time0 : 0.000e+00
: 125 : vars_time0 : 0.000e+00
: 126 : vars_time1 : 0.000e+00
: 127 : vars_time1 : 0.000e+00
: 128 : vars_time1 : 0.000e+00
: 129 : vars_time1 : 0.000e+00
: 130 : vars_time1 : 0.000e+00
: 131 : vars_time1 : 0.000e+00
: 132 : vars_time1 : 0.000e+00
: 133 : vars_time1 : 0.000e+00
: 134 : vars_time1 : 0.000e+00
: 135 : vars_time1 : 0.000e+00
: 136 : vars_time1 : 0.000e+00
: 137 : vars_time1 : 0.000e+00
: 138 : vars_time1 : 0.000e+00
: 139 : vars_time1 : 0.000e+00
: 140 : vars_time1 : 0.000e+00
: 141 : vars_time1 : 0.000e+00
: 142 : vars_time1 : 0.000e+00
: 143 : vars_time1 : 0.000e+00
: 144 : vars_time1 : 0.000e+00
: 145 : vars_time1 : 0.000e+00
: 146 : vars_time1 : 0.000e+00
: 147 : vars_time2 : 0.000e+00
: 148 : vars_time2 : 0.000e+00
: 149 : vars_time2 : 0.000e+00
: 150 : vars_time2 : 0.000e+00
: 151 : vars_time2 : 0.000e+00
: 152 : vars_time2 : 0.000e+00
: 153 : vars_time2 : 0.000e+00
: 154 : vars_time2 : 0.000e+00
: 155 : vars_time2 : 0.000e+00
: 156 : vars_time2 : 0.000e+00
: 157 : vars_time2 : 0.000e+00
: 158 : vars_time2 : 0.000e+00
: 159 : vars_time2 : 0.000e+00
: 160 : vars_time2 : 0.000e+00
: 161 : vars_time2 : 0.000e+00
: 162 : vars_time2 : 0.000e+00
: 163 : vars_time2 : 0.000e+00
: 164 : vars_time2 : 0.000e+00
: 165 : vars_time2 : 0.000e+00
: 166 : vars_time2 : 0.000e+00
: 167 : vars_time2 : 0.000e+00
: 168 : vars_time2 : 0.000e+00
: 169 : vars_time2 : 0.000e+00
: 170 : vars_time2 : 0.000e+00
: 171 : vars_time2 : 0.000e+00
: 172 : vars_time2 : 0.000e+00
: 173 : vars_time2 : 0.000e+00
: 174 : vars_time3 : 0.000e+00
: 175 : vars_time3 : 0.000e+00
: 176 : vars_time3 : 0.000e+00
: 177 : vars_time3 : 0.000e+00
: 178 : vars_time3 : 0.000e+00
: 179 : vars_time3 : 0.000e+00
: 180 : vars_time3 : 0.000e+00
: 181 : vars_time3 : 0.000e+00
: 182 : vars_time3 : 0.000e+00
: 183 : vars_time3 : 0.000e+00
: 184 : vars_time3 : 0.000e+00
: 185 : vars_time3 : 0.000e+00
: 186 : vars_time3 : 0.000e+00
: 187 : vars_time3 : 0.000e+00
: 188 : vars_time3 : 0.000e+00
: 189 : vars_time3 : 0.000e+00
: 190 : vars_time3 : 0.000e+00
: 191 : vars_time3 : 0.000e+00
: 192 : vars_time3 : 0.000e+00
: 193 : vars_time3 : 0.000e+00
: 194 : vars_time3 : 0.000e+00
: 195 : vars_time3 : 0.000e+00
: 196 : vars_time3 : 0.000e+00
: 197 : vars_time3 : 0.000e+00
: 198 : vars_time3 : 0.000e+00
: 199 : vars_time4 : 0.000e+00
: 200 : vars_time4 : 0.000e+00
: 201 : vars_time4 : 0.000e+00
: 202 : vars_time4 : 0.000e+00
: 203 : vars_time4 : 0.000e+00
: 204 : vars_time4 : 0.000e+00
: 205 : vars_time4 : 0.000e+00
: 206 : vars_time4 : 0.000e+00
: 207 : vars_time4 : 0.000e+00
: 208 : vars_time4 : 0.000e+00
: 209 : vars_time4 : 0.000e+00
: 210 : vars_time4 : 0.000e+00
: 211 : vars_time4 : 0.000e+00
: 212 : vars_time4 : 0.000e+00
: 213 : vars_time4 : 0.000e+00
: 214 : vars_time4 : 0.000e+00
: 215 : vars_time4 : 0.000e+00
: 216 : vars_time4 : 0.000e+00
: 217 : vars_time4 : 0.000e+00
: 218 : vars_time4 : 0.000e+00
: 219 : vars_time4 : 0.000e+00
: 220 : vars_time4 : 0.000e+00
: 221 : vars_time4 : 0.000e+00
: 222 : vars_time4 : 0.000e+00
: 223 : vars_time4 : 0.000e+00
: 224 : vars_time4 : 0.000e+00
: 225 : vars_time5 : 0.000e+00
: 226 : vars_time5 : 0.000e+00
: 227 : vars_time5 : 0.000e+00
: 228 : vars_time5 : 0.000e+00
: 229 : vars_time5 : 0.000e+00
: 230 : vars_time5 : 0.000e+00
: 231 : vars_time5 : 0.000e+00
: 232 : vars_time5 : 0.000e+00
: 233 : vars_time5 : 0.000e+00
: 234 : vars_time5 : 0.000e+00
: 235 : vars_time5 : 0.000e+00
: 236 : vars_time5 : 0.000e+00
: 237 : vars_time5 : 0.000e+00
: 238 : vars_time5 : 0.000e+00
: 239 : vars_time5 : 0.000e+00
: 240 : vars_time5 : 0.000e+00
: 241 : vars_time5 : 0.000e+00
: 242 : vars_time5 : 0.000e+00
: 243 : vars_time6 : 0.000e+00
: 244 : vars_time6 : 0.000e+00
: 245 : vars_time6 : 0.000e+00
: 246 : vars_time6 : 0.000e+00
: 247 : vars_time6 : 0.000e+00
: 248 : vars_time6 : 0.000e+00
: 249 : vars_time6 : 0.000e+00
: 250 : vars_time6 : 0.000e+00
: 251 : vars_time6 : 0.000e+00
: 252 : vars_time6 : 0.000e+00
: 253 : vars_time6 : 0.000e+00
: 254 : vars_time6 : 0.000e+00
: 255 : vars_time6 : 0.000e+00
: 256 : vars_time6 : 0.000e+00
: 257 : vars_time6 : 0.000e+00
: 258 : vars_time6 : 0.000e+00
: 259 : vars_time6 : 0.000e+00
: 260 : vars_time7 : 0.000e+00
: 261 : vars_time7 : 0.000e+00
: 262 : vars_time7 : 0.000e+00
: 263 : vars_time7 : 0.000e+00
: 264 : vars_time7 : 0.000e+00
: 265 : vars_time7 : 0.000e+00
: 266 : vars_time7 : 0.000e+00
: 267 : vars_time7 : 0.000e+00
: 268 : vars_time7 : 0.000e+00
: 269 : vars_time7 : 0.000e+00
: 270 : vars_time7 : 0.000e+00
: 271 : vars_time7 : 0.000e+00
: 272 : vars_time7 : 0.000e+00
: 273 : vars_time8 : 0.000e+00
: 274 : vars_time8 : 0.000e+00
: 275 : vars_time8 : 0.000e+00
: 276 : vars_time8 : 0.000e+00
: 277 : vars_time8 : 0.000e+00
: 278 : vars_time8 : 0.000e+00
: 279 : vars_time8 : 0.000e+00
: 280 : vars_time8 : 0.000e+00
: 281 : vars_time8 : 0.000e+00
: 282 : vars_time8 : 0.000e+00
: 283 : vars_time8 : 0.000e+00
: 284 : vars_time8 : 0.000e+00
: 285 : vars_time8 : 0.000e+00
: 286 : vars_time8 : 0.000e+00
: 287 : vars_time8 : 0.000e+00
: 288 : vars_time8 : 0.000e+00
: 289 : vars_time9 : 0.000e+00
: 290 : vars_time9 : 0.000e+00
: 291 : vars_time9 : 0.000e+00
: 292 : vars_time9 : 0.000e+00
: 293 : vars_time9 : 0.000e+00
: 294 : vars_time9 : 0.000e+00
: 295 : vars_time9 : 0.000e+00
: 296 : vars_time9 : 0.000e+00
: 297 : vars_time9 : 0.000e+00
: 298 : vars_time9 : 0.000e+00
: 299 : vars_time9 : 0.000e+00
: 300 : vars_time9 : 0.000e+00
: --------------------------------------------
TH1.Print Name = TrainingHistory_TMVA_LSTM_trainingError, Entries= 0, Total sum= 6.53556
TH1.Print Name = TrainingHistory_TMVA_LSTM_valError, Entries= 0, Total sum= 6.75982
TH1.Print Name = TrainingHistory_TMVA_DNN_trainingError, Entries= 0, Total sum= 13.4915
TH1.Print Name = TrainingHistory_TMVA_DNN_valError, Entries= 0, Total sum= 13.5154
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'accuracy', Entries= 0, Total sum= 6.62266
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'loss', Entries= 0, Total sum= 6.01606
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'val_accuracy', Entries= 0, Total sum= 6.71563
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'val_loss', Entries= 0, Total sum= 6.01005
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_PyKeras_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: TMVA_LSTM for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.05 sec
Factory : Test method: TMVA_DNN for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.02 sec
Factory : Test method: PyKeras_LSTM for Classification performance
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_LSTM.h5
PyKeras_LSTM : [dataset] : Evaluation of PyKeras_LSTM on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.228 sec
Factory : Test method: BDTG for Classification performance
:
BDTG : [dataset] : Evaluation of BDTG on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00606 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: TMVA_LSTM
:
TMVA_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN
:
TMVA_DNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: PyKeras_LSTM
:
PyKeras_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: BDTG
:
BDTG : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDTG : 0.835
: dataset PyKeras_LSTM : 0.802
: dataset TMVA_LSTM : 0.686
: dataset TMVA_DNN : 0.650
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDTG : 0.130 (0.325) 0.528 (0.670) 0.818 (0.889)
: dataset PyKeras_LSTM : 0.085 (0.125) 0.495 (0.575) 0.754 (0.773)
: dataset TMVA_LSTM : 0.032 (0.087) 0.297 (0.353) 0.579 (0.628)
: dataset TMVA_DNN : 0.045 (0.040) 0.215 (0.220) 0.548 (0.515)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 800 events
:
Dataset:dataset : Created tree 'TrainTree' with 3200 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
nthreads = 4