56 TAxis *xaxis =
h->GetXaxis();
80 Int_t newbinsx,newbinsy;
81 TAxis *xaxis =
h->GetXaxis();
82 TAxis *yaxis =
h->GetYaxis();
113 Int_t newbinsx,newbinsy,newbinsz;
114 TAxis *xaxis =
h->GetXaxis();
115 TAxis *yaxis =
h->GetYaxis();
116 TAxis *zaxis =
h->GetZaxis();
128 else {zmin -= 1; zmax += 1;}
198 if(strchr(
option,
't')) optionTime = 1;
else optionTime = 0;
204 if (al ==
ah)
ah = al+1;
206 if (nold == -1 && BinWidth > 0 )
goto L90;
208 if (ntemp < 1) ntemp = 1;
213 if (awidth >= FLT_MAX)
goto LOK;
214 if (awidth <= 0)
goto LOK;
219 if (optionTime && awidth>=60) {
221 awidth /= 60; timemulti *=60;
225 awidth /= 60; timemulti *= 60;
229 awidth /= 24; timemulti *= 24;
232 if (awidth>=30.43685) {
233 awidth /= 30.43685; timemulti *= 30.43685;
237 awidth /= 12; timemulti *= 12;
247 if (jlog <-200 || jlog > 200) {
254 if (awidth <= 1 && (!optionTime || timemulti==1) ) jlog--;
265 if (sigfig <= 1) siground = 1;
266 else if (sigfig <= 1.5 && jlog==1) siground = 1.5;
267 else if (sigfig <= 2) siground = 2;
268 else if (sigfig <= 3 && jlog ==1) siground = 3;
269 else if (sigfig <= 5 && sigfig>3 && jlog ==0) siground = 5;
270 else if (jlog==0) {siground = 1; jlog++;}
276 if (sigfig <= 1 && jlog==0) siground = 1;
277 else if (sigfig <= 1.2 && jlog==1) siground = 1.2;
278 else if (sigfig <= 2 && jlog==0) siground = 2;
279 else if (sigfig <= 2.4 && jlog==1) siground = 2.4;
280 else if (sigfig <= 3) siground = 3;
281 else if (sigfig <= 6) siground = 6;
282 else if (jlog==0) siground = 12;
288 if (sigfig <= 1 && jlog==0) siground = 1;
289 else if (sigfig <= 1.4 && jlog==1) siground = 1.4;
290 else if (sigfig <= 3 && jlog ==1) siground = 3;
296 if (sigfig <= 1) siground = 1;
297 else if (sigfig <= 2) siground = 2;
298 else if (sigfig <= 5 && (!optionTime || jlog<1)) siground = 5;
299 else if (sigfig <= 6 && optionTime && jlog==1) siground = 6;
300 else {siground = 1; jlog++; }
305 if (optionTime) BinWidth *= timemulti;
314 if (nbins > 10*nold && nbins > 10000) nbins = nold;
320 alb =
ah/BinWidth + 1.00001;
325 if (nold == -1)
goto LOK;
327 if (nold > 1 || nbins == 1)
goto LOK;
328 BinWidth = BinWidth*2;
332 if (2*nbins == nold && !optionTime) {ntemp++;
goto L20; }
337 Int_t oldnbins = nbins;
342 if (al-BinLow >= atest) { BinLow += BinWidth; nbins--; }
343 if (BinHigh-
ah >= atest) { BinHigh -= BinWidth; nbins--; }
344 if (!optionTime && BinLow >= BinHigh) {
347 BinHigh = oldBinHigh;
350 else if (optionTime && BinLow>=BinHigh) {
352 BinHigh = oldBinHigh;
354 BinWidth = (oldBinHigh - oldBinLow)/nbins;
355 atest = BinWidth*0.0001;
356 if (al-BinLow >= atest) { BinLow += BinWidth; nbins--; }
357 if (BinHigh-
ah >= atest) { BinHigh -= BinWidth; nbins--; }
369 Double_t binlow = 0,binhigh = 0,binwidth=0;
372 if (isInteger) dx = 5*(
xmax-
xmin)/nbins;
375 if (umin < 0 && xmin >= 0) umin = 0;
376 if (umax > 0 &&
xmax <= 0) umax = 0;
380 if (binwidth <= 0 || binwidth > 1.e+39) {
401 if (
xmin +nbins*bw < umax) {nbins++;
xmax =
xmin +nbins*bw;}
Class to manage histogram axis.
THashList * GetLabels() const
TH1 is the base class of all histogram classes in ROOT.
Class to compute nice axis limits.
static void SetLimitsFinder(THLimitsFinder *finder)
This static function can be used to specify a finder derived from THLimitsFinder.
~THLimitsFinder() override
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
static void OptimizeLimits(Int_t nbins, Int_t &newbins, Double_t &xmin, Double_t &xmax, Bool_t isInteger)
Optimize axis limits.
static THLimitsFinder * fgLimitsFinder
! Pointer to hist limits finder
virtual Int_t FindGoodLimits(TH1 *h, Double_t xmin, Double_t xmax)
Compute the best axis limits for the X axis.
static void Optimize(Double_t A1, Double_t A2, Int_t nold, Double_t &BinLow, Double_t &BinHigh, Int_t &nbins, Double_t &BWID, Option_t *option="")
Static function to compute reasonable axis limits.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.