Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
SPlot.cxx
Go to the documentation of this file.
1// @(#)root/roostats:$Id$
2// Author: Kyle Cranmer 28/07/2008
3
4/*************************************************************************
5 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/*****************************************************************************
13 * Project: RooStats
14 * Package: RooFit/RooStats
15 *
16 * Authors:
17 * Original code from M. Pivk as part of MLFit package from BaBar.
18 * Modifications:
19 * Giacinto Piacquadio, Maurizio Pierini: modifications for new RooFit version
20 * George H. Lewis, Kyle Cranmer: generalized for weighted events
21 *
22 * Porting to RooStats (with permission) by Kyle Cranmer, July 2008
23 *
24 *****************************************************************************/
25
26
27/** \class RooStats::SPlot
28 \ingroup Roostats
29
30 A class to calculate "sWeights" used to create an "sPlot".
31 An sPlot can reweight a dataset to show different components (e.g. signal / background),
32 but it doesn't use cuts, and therefore doesn't have to sort events into signal/background (or other) categories.
33 Instead of *assigning* a category to each event in the dataset, all events are *weighted*.
34 To compute the weights, a PDF with different components is analysed, and the weights are added
35 to the dataset. When plotting the dataset with the weights of the signal or
36 background components, the data looks like "signal", but all events in the dataset are used.
37
38 The result is similar to a likelihood projection plot, but without cuts.
39
40 \note SPlot needs to fit the pdf to the data once, so make sure that all relevant fit arguments such as
41 the fit range are passed in the constructor.
42
43 The code is based on
44 ``SPlot: A statistical tool to unfold data distributions,''
45 Nucl. Instrum. Meth. A 555, 356 (2005) [arXiv:physics/0402083].
46
47 ### Creating an SPlot
48 To use this class, you first must have a pdf that includes
49 yield parameters for (possibly several) different species, for example a signal and background
50 yield. Those yields must be of type RooRealVar / RooLinearVar (or anything that derives from
51 RooAbsRealLValue). This is necessary because
52 RooStats needs to be able to set the yields to 0 and 1 to probe the PDF. After
53 constructing the s weights, the yields will be restored to their original values.
54
55 To create an instance of the SPlot, supply a data set, the pdf to analyse,
56 and a list which parameters of the pdf are yields. The SPlot will calculate SWeights, and
57 include these as columns in the RooDataSet. The dataset will have two additional columns
58 for every yield with name "`<varname>`":
59 - `L_<varname>` is the likelihood for each event, *i.e.*, the pdf evaluated for the given value of the variable "varname".
60 - `<varname>_sw` is the value of the sWeight for the variable "varname" for each event.
61
62 In SPlot::SPlot(), one can choose whether columns should be added to an existing dataset or whether a copy of the dataset
63 should be created.
64
65 ### Plotting s-weighted data
66 After computing the s weights, create a new dataset that uses the s weights of the variable of interest for weighting.
67 If the yield parameter for signal was e.g. "signalYield", the dataset can be constructed as follows:
68 ~~~{.cpp}
69 RooDataSet data_signal("<name>", "<title>", <dataWithSWeights>, <variables>, 0, "signalYield_sw");
70 ~~~
71
72 A complete tutorial with an extensive model is rs301_splot.C
73
74 #### Using ratios as yield parameters
75 As mentioned, RooStats needs to be able to modify the yield parameters. That means that they have to be a RooRealVar
76 of a RooLinearVar. This allows using ratio parameters as in the following example:
77 ~~~{.cpp}
78 RooRealVar x("x", "observable", 0, 0, 20);
79 RooRealVar m("m", "mean", 5., -10, 10);
80 RooRealVar s("s", "sigma", 2., 0, 10);
81 RooGaussian gauss("gauss", "gauss", x, m, s);
82
83 RooRealVar a("a", "exp", -0.2, -10., 0.);
84 RooExponential ex("ex", "ex", x, a);
85
86 RooRealVar common("common", "common scale", 3., 0, 10);
87 RooRealVar r1("r1", "ratio of signal events", 0.3, 0, 10);
88 RooRealVar r2("r2", "ratio of background events", 0.5, 0, 10);
89 RooLinearVar c1("c1", "c1", r1, common, RooFit::RooConst(0.));
90 RooLinearVar c2("c2", "c2", r2, common, RooFit::RooConst(0.));
91
92 RooAddPdf sum("sum", "sum", RooArgSet(gauss, ex), RooArgSet(c1, c2));
93 auto data = sum.generate(x, 1000);
94
95 RooStats::SPlot splot("splot", "splot", *data, &sum, RooArgSet(c1, c2));
96 ~~~
97*/
98
99#include <vector>
100#include <map>
101
102#include "RooStats/SPlot.h"
103#include "RooAbsPdf.h"
104#include "RooDataSet.h"
105#include "RooRealVar.h"
106#include "RooGlobalFunc.h"
108
109
110#include "TMatrixD.h"
111
112
114
115using namespace RooStats;
116using namespace std;
117
118////////////////////////////////////////////////////////////////////////////////
119
121{
122 if(TestBit(kOwnData) && fSData)
123 delete fSData;
124
125}
126
127////////////////////////////////////////////////////////////////////////////////
128/// Default constructor
129
131 TNamed()
132{
133 RooArgList Args;
134
135 fSWeightVars.assign(Args);
136
137 fSData = nullptr;
138
139}
140
141////////////////////////////////////////////////////////////////////////////////
142
143SPlot::SPlot(const char* name, const char* title):
144 TNamed(name, title)
145{
146 RooArgList Args;
147
148 fSWeightVars.assign(Args);
149
150 fSData = nullptr;
151
152}
153
154////////////////////////////////////////////////////////////////////////////////
155///Constructor from a RooDataSet
156///No sWeighted variables are present
157
158SPlot::SPlot(const char* name, const char* title, const RooDataSet &data):
159 TNamed(name, title)
160{
161 RooArgList Args;
162
163 fSWeightVars.assign(Args);
164
165 fSData = (RooDataSet*) &data;
166}
167
168////////////////////////////////////////////////////////////////////////////////
169/// Copy Constructor from another SPlot
170
171SPlot::SPlot(const SPlot &other):
172 TNamed(other)
173{
174 RooArgList Args = (RooArgList) other.GetSWeightVars();
175
177
178 fSData = (RooDataSet*) other.GetSDataSet();
179
180}
181
182////////////////////////////////////////////////////////////////////////////////
183///Construct a new SPlot instance, calculate sWeights, and include them
184///in the RooDataSet held by this instance.
185///
186/// The constructor automatically calls AddSWeight() to add s weights to the dataset.
187/// These can be retrieved later using GetSWeight() or GetSDataSet().
188///\param[in] name Name of the instance.
189///\param[in] title Title of the instance.
190///\param[in] data Dataset to fit to.
191///\param[in] pdf PDF to compute s weights for.
192///\param[in] yieldsList List of parameters in `pdf` that are yields. These must be RooRealVar or RooLinearVar, since RooStats will need to modify their values.
193///\param[in] projDeps Don't normalise over these parameters when calculating the sWeights. Will be passed on to AddSWeight().
194///\param[in] useWeights Include weights of the input data in calculation of s weights.
195///\param[in] cloneData Make a clone of the incoming data before adding weights.
196///\param[in] newName New name for the data.
197///\param[in] arg5,arg6,arg7,arg8 Additional arguments for the fitting step in AddSWeight().
198SPlot::SPlot(const char* name, const char* title, RooDataSet& data, RooAbsPdf* pdf,
199 const RooArgList &yieldsList, const RooArgSet &projDeps,
200 bool useWeights, bool cloneData, const char* newName,
201 const RooCmdArg& arg5, const RooCmdArg& arg6, const RooCmdArg& arg7, const RooCmdArg& arg8):
202 TNamed(name, title)
203{
204 if(cloneData) {
205 fSData = (RooDataSet*) data.Clone(newName);
207 }
208 else
209 fSData = (RooDataSet*) &data;
210
211 // Add check that yieldsList contains all RooRealVar / RooAbsRealLValue
212 for (const auto arg : yieldsList) {
213 if (!dynamic_cast<const RooAbsRealLValue*>(arg)) {
214 coutE(InputArguments) << "SPlot::SPlot(" << GetName() << ") input argument "
215 << arg->GetName() << " is not of type RooRealVar (or RooLinearVar)."
216 << "\nRooStats must be able to set it to 0 and to 1 to probe the PDF." << endl ;
217 throw std::invalid_argument(Form("SPlot::SPlot(%s) input argument %s is not of type RooRealVar/RooLinearVar",GetName(),arg->GetName())) ;
218 }
219 }
220
221 //Construct a new SPlot class,
222 //calculate sWeights, and include them
223 //in the RooDataSet of this class.
224
225 this->AddSWeight(pdf, yieldsList, projDeps, useWeights, arg5, arg6, arg7, arg8);
226}
227
228////////////////////////////////////////////////////////////////////////////////
229/// Set dataset (if not passed in constructor).
231{
232 if(data) {
234 return fSData;
235 } else
236 return nullptr;
237}
238
239////////////////////////////////////////////////////////////////////////////////
240/// Retrieve s-weighted data.
241/// It does **not** automatically call AddSWeight(). This needs to be done manually.
243{
244 return fSData;
245}
246
247////////////////////////////////////////////////////////////////////////////////
248/// Retrieve an s weight.
249/// \param[in] numEvent Event number to retrieve s weight for.
250/// \param[in] sVariable The yield parameter to retrieve the s weight for.
251double SPlot::GetSWeight(Int_t numEvent, const char* sVariable) const
252{
253 if(numEvent > fSData->numEntries() )
254 {
255 coutE(InputArguments) << "Invalid Entry Number" << endl;
256 return -1;
257 }
258
259 if(numEvent < 0)
260 {
261 coutE(InputArguments) << "Invalid Entry Number" << endl;
262 return -1;
263 }
264
265 double totalYield = 0;
266
267 std::string varname(sVariable);
268 varname += "_sw";
269
270
271 if(fSWeightVars.find(sVariable) )
272 {
273 RooArgSet Row(*fSData->get(numEvent));
274 totalYield += Row.getRealValue(sVariable);
275
276 return totalYield;
277 }
278
279 if( fSWeightVars.find(varname.c_str()) )
280 {
281
282 RooArgSet Row(*fSData->get(numEvent));
283 totalYield += Row.getRealValue(varname.c_str() );
284
285 return totalYield;
286 }
287
288 else
289 coutE(InputArguments) << "InputVariable not in list of sWeighted variables" << endl;
290
291 return -1;
292}
293
294
295////////////////////////////////////////////////////////////////////////////////
296/// Sum the SWeights for a particular event.
297/// This sum should equal the total weight of that event.
298/// This method is intended to be used as a check.
299
300double SPlot::GetSumOfEventSWeight(Int_t numEvent) const
301{
302 if(numEvent > fSData->numEntries() )
303 {
304 coutE(InputArguments) << "Invalid Entry Number" << endl;
305 return -1;
306 }
307
308 if(numEvent < 0)
309 {
310 coutE(InputArguments) << "Invalid Entry Number" << endl;
311 return -1;
312 }
313
314 Int_t numSWeightVars = this->GetNumSWeightVars();
315
316 double eventSWeight = 0;
317
318 RooArgSet Row(*fSData->get(numEvent));
319
320 for (Int_t i = 0; i < numSWeightVars; i++)
321 eventSWeight += Row.getRealValue(fSWeightVars.at(i)->GetName() );
322
323 return eventSWeight;
324}
325
326////////////////////////////////////////////////////////////////////////////////
327/// Sum the SWeights for a particular species over all events.
328/// This should equal the total (weighted) yield of that species.
329/// This method is intended as a check.
330
331double SPlot::GetYieldFromSWeight(const char* sVariable) const
332{
333
334 double totalYield = 0;
335
336 std::string varname(sVariable);
337 varname += "_sw";
338
339
340 if(fSWeightVars.find(sVariable) )
341 {
342 for(Int_t i=0; i < fSData->numEntries(); i++)
343 {
344 RooArgSet Row(*fSData->get(i));
345 totalYield += Row.getRealValue(sVariable);
346 }
347
348 return totalYield;
349 }
350
351 if( fSWeightVars.find(varname.c_str()) )
352 {
353 for(Int_t i=0; i < fSData->numEntries(); i++)
354 {
355 RooArgSet Row(*fSData->get(i));
356 totalYield += Row.getRealValue(varname.c_str() );
357 }
358
359 return totalYield;
360 }
361
362 else
363 coutE(InputArguments) << "InputVariable not in list of sWeighted variables" << endl;
364
365 return -1;
366}
367
368
369////////////////////////////////////////////////////////////////////////////////
370/// Return a RooArgList containing all parameters that have s weights.
371
373{
374
376
377 return Args;
378
379}
380
381////////////////////////////////////////////////////////////////////////////////
382/// Return the number of SWeights
383/// In other words, return the number of
384/// species that we are trying to extract.
385
387{
389
390 return Args.getSize();
391}
392
393////////////////////////////////////////////////////////////////////////////////
394/// Method which adds the sWeights to the dataset.
395///
396/// The SPlot will contain two new variables for each yield parameter:
397/// - `L_<varname>` is the likelihood for each event, i.e., the pdf evaluated for the a given value of the variable "varname".
398/// - `<varname>_sw` is the value of the sWeight for the variable "varname" for each event.
399///
400/// Find Parameters in the PDF to be considered fixed when calculating the SWeights
401/// and be sure to NOT include the yields in that list.
402///
403/// After fixing non-yield parameters, this function will start a fit by calling
404/// ```
405/// pdf->fitTo(*fSData, RooFit::Extended(true), RooFit::SumW2Error(true), RooFit::PrintLevel(-1), RooFit::PrintEvalErrors(-1)).
406/// ```
407/// One can pass additional arguments to `fitTo`, such as `RooFit::Range("fitrange")`, as `arg5`, `arg6`, `arg7`, `arg8`.
408///
409/// \note A `RooFit::Range` may be necessary to get expected results if you initially fit in a range
410/// and/or called `pdf->fixCoefRange("fitrange")` on `pdf`.
411/// Pass `arg5`, `arg6`, `arg7`, `arg8` AT YOUR OWN RISK.
412///
413/// \param[in] pdf PDF to fit to data to compute s weights.
414/// \param[in] yieldsTmp Yields to use to compute s weights.
415/// \param[in] projDeps These will not be normalized over when calculating the sWeights,
416/// and will be considered parameters, not observables.
417/// \param[in] includeWeights Include weights of the input data in calculation of s weights.
418/// \param[in] arg5,arg6,arg7,arg8 Optional additional arguments for the fitting step.
419void SPlot::AddSWeight( RooAbsPdf* pdf, const RooArgList &yieldsTmp,
420 const RooArgSet &projDeps, bool includeWeights,
421 const RooCmdArg& arg5, const RooCmdArg& arg6, const RooCmdArg& arg7, const RooCmdArg& arg8)
422{
423
424 // Find Parameters in the PDF to be considered fixed when calculating the SWeights
425 // and be sure to NOT include the yields in that list
426 std::unique_ptr<RooArgSet> constParameters{pdf->getParameters(fSData)};
427 for (unsigned int i=0; i < constParameters->size(); ++i) {
428 // Need a counting loop since collection is being modified
429 auto& par = *(*constParameters)[i];
430 if (std::any_of(yieldsTmp.begin(), yieldsTmp.end(), [&](const RooAbsArg* yield){ return yield->dependsOn(par); })) {
431 constParameters->remove(par, true, true);
432 --i;
433 }
434 }
435
436
437 // Set these parameters constant and store them so they can later
438 // be set to not constant
439 std::vector<RooAbsRealLValue*> constVarHolder;
440
441 for(Int_t i = 0; i < constParameters->getSize(); i++)
442 {
443 RooAbsRealLValue* varTemp = static_cast<RooAbsRealLValue*>( (*constParameters)[i] );
444 if(varTemp && varTemp->isConstant() == 0 )
445 {
446 varTemp->setConstant();
447 constVarHolder.push_back(varTemp);
448 }
449 }
450
451 // Fit yields to the data with all other variables held constant
452 // This is necessary because SPlot assumes the yields minimise -Log(likelihood)
453 pdf->fitTo(*fSData, RooFit::Extended(true), RooFit::SumW2Error(true), RooFit::PrintLevel(-1), RooFit::PrintEvalErrors(-1), arg5, arg6, arg7, arg8);
454
455 // The list of variables to normalize over when calculating PDF values.
456 RooArgSet vars(*fSData->get() );
457 vars.remove(projDeps, true, true);
458
459 // Hold the value of the fitted yields
460 std::vector<double> yieldsHolder;
461
462 yieldsHolder.reserve(yieldsTmp.getSize());
463 for(Int_t i = 0; i < yieldsTmp.getSize(); i++) {
464 yieldsHolder.push_back(static_cast<RooAbsReal*>(yieldsTmp.at(i))->getVal(&vars));
465 }
466
467 const Int_t nspec = yieldsTmp.getSize();
468 RooArgList yields = *(RooArgList*)yieldsTmp.snapshot(false);
469
471 coutI(InputArguments) << "Printing Yields" << endl;
472 yields.Print();
473 }
474
475
476 // first calculate the pdf values for all species and all events
477 std::vector<RooAbsRealLValue*> yieldvars ;
478 RooArgSet pdfServers;
479 pdf->treeNodeServerList(&pdfServers);
480
481 std::vector<double> yieldvalues ;
482 for (Int_t k = 0; k < nspec; ++k) {
483 auto thisyield = static_cast<const RooAbsReal*>(yields.at(k)) ;
484 auto yieldinpdf = static_cast<RooAbsRealLValue*>(pdfServers.find(thisyield->GetName()));
485 assert(pdf->dependsOn(*yieldinpdf));
486
487 if (yieldinpdf) {
488 coutI(InputArguments)<< "yield in pdf: " << yieldinpdf->GetName() << " " << thisyield->getVal(&vars) << endl;
489
490 yieldvars.push_back(yieldinpdf) ;
491 yieldvalues.push_back(thisyield->getVal(&vars)) ;
492 }
493 }
494
495 Int_t numevents = fSData->numEntries() ;
496
497
498
499
500 // set all yield to zero
501 for(Int_t m=0; m<nspec; ++m) {
502 auto theVar = static_cast<RooAbsRealLValue*>(yieldvars[m]);
503 theVar->setVal(0) ;
504
505 //Check that range of yields is at least (0,1), and fix otherwise
506 if (theVar->getMin() > 0) {
507 coutE(InputArguments) << "Yield variables need to have a range that includes at least [0, 1]. Minimum for "
508 << theVar->GetName() << " is " << theVar->getMin() << std::endl;
509 if (RooRealVar* realVar = dynamic_cast<RooRealVar*>(theVar)) {
510 coutE(InputArguments) << "Setting min range to 0" << std::endl;
511 realVar->setMin(0);
512 } else {
513 throw std::invalid_argument(std::string("Yield variable ") + theVar->GetName() + " must have a range that includes 0.");
514 }
515 }
516
517 if (theVar->getMax() < 1) {
518 coutW(InputArguments) << "Yield variables need to have a range that includes at least [0, 1]. Maximum for "
519 << theVar->GetName() << " is " << theVar->getMax() << std::endl;
520 if (RooRealVar* realVar = dynamic_cast<RooRealVar*>(theVar)) {
521 coutE(InputArguments) << "Setting max range to 1" << std::endl;
522 realVar->setMax(1);
523 } else {
524 throw std::invalid_argument(std::string("Yield variable ") + theVar->GetName() + " must have a range that includes 1.");
525 }
526 }
527 }
528
529
530 // For every event and for every species,
531 // calculate the value of the component pdf for that specie
532 // by setting the yield of that specie to 1
533 // and all others to 0. Evaluate the pdf for each event
534 // and store the values.
535
536 std::unique_ptr<RooArgSet> pdfvars{pdf->getVariables()};
537 std::vector<std::vector<double> > pdfvalues(numevents,std::vector<double>(nspec,0)) ;
538
539 for (Int_t ievt = 0; ievt <numevents; ievt++)
540 {
541 //WVE: FIX THIS PART, EVALUATION PROGRESS!!
542
543 pdfvars->assign(*fSData->get(ievt));
544
545 for(Int_t k = 0; k < nspec; ++k) {
546 auto theVar = static_cast<RooAbsRealLValue*>(yieldvars[k]);
547
548 // set this yield to 1
549 theVar->setVal( 1 ) ;
550 // evaluate the pdf
551 double f_k = pdf->getVal(&vars) ;
552 pdfvalues[ievt][k] = f_k ;
553 if( !(f_k>1 || f_k<1) )
554 coutW(InputArguments) << "Strange pdf value: " << ievt << " " << k << " " << f_k << std::endl ;
555 theVar->setVal( 0 ) ;
556 }
557 }
558
559 // check that the likelihood normalization is fine
560 std::vector<double> norm(nspec,0) ;
561 for (Int_t ievt = 0; ievt <numevents ; ievt++)
562 {
563 double dnorm(0) ;
564 for(Int_t k=0; k<nspec; ++k) dnorm += yieldvalues[k] * pdfvalues[ievt][k] ;
565 for(Int_t j=0; j<nspec; ++j) norm[j] += pdfvalues[ievt][j]/dnorm ;
566 }
567
568 coutI(Contents) << "likelihood norms: " ;
569
570 for(Int_t k=0; k<nspec; ++k) coutI(Contents) << norm[k] << " " ;
571 coutI(Contents) << std::endl ;
572
573 // Make a TMatrixD to hold the covariance matrix.
574 TMatrixD covInv(nspec, nspec);
575 for (Int_t i = 0; i < nspec; i++) for (Int_t j = 0; j < nspec; j++) covInv(i,j) = 0;
576
577 coutI(Contents) << "Calculating covariance matrix";
578
579
580 // Calculate the inverse covariance matrix, using weights
581 for (Int_t ievt = 0; ievt < numevents; ++ievt)
582 {
583
584 fSData->get(ievt) ;
585
586 // Calculate contribution to the inverse of the covariance
587 // matrix. See BAD 509 V2 eqn. 15
588
589 // Sum for the denominator
590 double dsum(0);
591 for(Int_t k = 0; k < nspec; ++k)
592 dsum += pdfvalues[ievt][k] * yieldvalues[k] ;
593
594 for(Int_t n=0; n<nspec; ++n)
595 for(Int_t j=0; j<nspec; ++j)
596 {
597 if(includeWeights)
598 covInv(n,j) += fSData->weight()*pdfvalues[ievt][n]*pdfvalues[ievt][j]/(dsum*dsum) ;
599 else
600 covInv(n,j) += pdfvalues[ievt][n]*pdfvalues[ievt][j]/(dsum*dsum) ;
601 }
602
603 //ADDED WEIGHT ABOVE
604
605 }
606
607 // Covariance inverse should now be computed!
608
609 // Invert to get the covariance matrix
610 if (covInv.Determinant() <=0)
611 {
612 coutE(Eval) << "SPlot Error: covariance matrix is singular; I can't invert it!" << std::endl;
613 covInv.Print();
614 return;
615 }
616
617 TMatrixD covMatrix(TMatrixD::kInverted,covInv);
618
619 //check cov normalization
620 if (RooMsgService::instance().isActive(this, RooFit::Eval, RooFit::DEBUG)) {
621 coutI(Eval) << "Checking Likelihood normalization: " << std::endl;
622 coutI(Eval) << "Yield of specie Sum of Row in Matrix Norm" << std::endl;
623 for(Int_t k=0; k<nspec; ++k)
624 {
625 double covnorm(0) ;
626 for(Int_t m=0; m<nspec; ++m) covnorm += covInv[k][m]*yieldvalues[m] ;
627 double sumrow(0) ;
628 for(Int_t m = 0; m < nspec; ++m) sumrow += covMatrix[k][m] ;
629 coutI(Eval) << yieldvalues[k] << " " << sumrow << " " << covnorm << endl ;
630 }
631 }
632
633 // calculate for each event the sWeight (BAD 509 V2 eq. 21)
634 coutI(Eval) << "Calculating sWeight" << std::endl;
635 std::vector<RooRealVar*> sweightvec ;
636 std::vector<RooRealVar*> pdfvec ;
637 RooArgSet sweightset ;
638
639 // Create and label the variables
640 // used to store the SWeights
641
643
644 for(Int_t k=0; k<nspec; ++k)
645 {
646 std::string wname = std::string(yieldvars[k]->GetName()) + "_sw";
647 RooRealVar* var = new RooRealVar(wname.c_str(),wname.c_str(),0) ;
648 sweightvec.push_back( var) ;
649 sweightset.add(*var) ;
650 fSWeightVars.add(*var);
651
652 wname = "L_" + std::string(yieldvars[k]->GetName());
653 var = new RooRealVar(wname.c_str(),wname.c_str(),0) ;
654 pdfvec.push_back( var) ;
655 sweightset.add(*var) ;
656 }
657
658 // Create and fill a RooDataSet
659 // with the SWeights
660
661 RooDataSet* sWeightData = new RooDataSet("dataset", "dataset with sWeights", sweightset);
662
663 for(Int_t ievt = 0; ievt < numevents; ++ievt)
664 {
665
666 fSData->get(ievt) ;
667
668 // sum for denominator
669 double dsum(0);
670 for(Int_t k = 0; k < nspec; ++k) dsum += pdfvalues[ievt][k] * yieldvalues[k] ;
671 // covariance weighted pdf for each specief
672 for(Int_t n=0; n<nspec; ++n)
673 {
674 double nsum(0) ;
675 for(Int_t j=0; j<nspec; ++j) nsum += covMatrix(n,j) * pdfvalues[ievt][j] ;
676
677
678 //Add the sWeights here!!
679 //Include weights,
680 //ie events weights are absorbed into sWeight
681
682
683 if(includeWeights) sweightvec[n]->setVal(fSData->weight() * nsum/dsum) ;
684 else sweightvec[n]->setVal( nsum/dsum) ;
685
686 pdfvec[n]->setVal( pdfvalues[ievt][n] ) ;
687
688 if( !(std::abs(nsum/dsum)>=0 ) )
689 {
690 coutE(Contents) << "error: " << nsum/dsum << endl ;
691 return;
692 }
693 }
694
695 sWeightData->add(sweightset) ;
696 }
697
698
699 // Add the SWeights to the original data set
700
701 fSData->merge(sWeightData);
702
703 delete sWeightData;
704
705 //Restore yield values
706
707 for(Int_t i = 0; i < yieldsTmp.getSize(); i++)
708 static_cast<RooAbsRealLValue*>(yieldsTmp.at(i))->setVal(yieldsHolder.at(i));
709
710 //Make any variables that were forced to constant no longer constant
711
712 for(Int_t i=0; i < (Int_t) constVarHolder.size(); i++)
713 constVarHolder.at(i)->setConstant(false);
714
715 return;
716
717}
#define coutI(a)
#define coutW(a)
#define coutE(a)
int Int_t
Definition RtypesCore.h:45
#define ClassImp(name)
Definition Rtypes.h:377
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
char name[80]
Definition TGX11.cxx:110
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
Definition TString.cxx:2467
Common abstract base class for objects that represent a value and a "shape" in RooFit.
Definition RooAbsArg.h:79
bool dependsOn(const RooAbsCollection &serverList, const RooAbsArg *ignoreArg=nullptr, bool valueOnly=false) const
Test whether we depend on (ie, are served by) any object in the specified collection.
bool isConstant() const
Check if the "Constant" attribute is set.
Definition RooAbsArg.h:363
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
RooFit::OwningPtr< RooArgSet > getVariables(bool stripDisconnected=true) const
Return RooArgSet with all variables (tree leaf nodes of expression tree)
void treeNodeServerList(RooAbsCollection *list, const RooAbsArg *arg=nullptr, bool doBranch=true, bool doLeaf=true, bool valueOnly=false, bool recurseNonDerived=false) const
Fill supplied list with nodes of the arg tree, following all server links, starting with ourself as t...
double getRealValue(const char *name, double defVal=0.0, bool verbose=false) const
Get value of a RooAbsReal stored in set with given name.
virtual bool remove(const RooAbsArg &var, bool silent=false, bool matchByNameOnly=false)
Remove the specified argument from our list.
RooAbsCollection * snapshot(bool deepCopy=true) const
Take a snap shot of current collection contents.
Int_t getSize() const
Return the number of elements in the collection.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
const_iterator end() const
void assign(const RooAbsCollection &other) const
Sets the value, cache and constant attribute of any argument in our set that also appears in the othe...
virtual RooAbsArg * addClone(const RooAbsArg &var, bool silent=false)
Add a clone of the specified argument to list.
const_iterator begin() const
RooAbsArg * find(const char *name) const
Find object with given name in list.
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
Abstract interface for all probability density functions.
Definition RooAbsPdf.h:40
RooFit::OwningPtr< RooFitResult > fitTo(RooAbsData &data, CmdArgs_t const &... cmdArgs)
Fit PDF to given dataset.
Definition RooAbsPdf.h:156
RooAbsRealLValue is the common abstract base class for objects that represent a real value that may a...
void setConstant(bool value=true)
virtual void setVal(double value)=0
Set the current value of the object. Needs to be overridden by implementations.
Abstract base class for objects that represent a real value and implements functionality common to al...
Definition RooAbsReal.h:59
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
Definition RooAbsReal.h:103
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:22
RooAbsArg * at(Int_t idx) const
Return object at given index, or nullptr if index is out of range.
Definition RooArgList.h:110
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:55
Named container for two doubles, two integers two object points and three string pointers that can be...
Definition RooCmdArg.h:26
RooDataSet is a container class to hold unbinned data.
Definition RooDataSet.h:57
const RooArgSet * get(Int_t index) const override
Return RooArgSet with coordinates of event 'index'.
bool merge(RooDataSet *data1, RooDataSet *data2=nullptr, RooDataSet *data3=nullptr, RooDataSet *data4=nullptr, RooDataSet *data5=nullptr, RooDataSet *data6=nullptr)
void add(const RooArgSet &row, double weight, double weightError)
Add one ore more rows of data.
double weight() const override
Return event weight of current event.
static RooMsgService & instance()
Return reference to singleton instance.
bool isActive(T self, RooFit::MsgTopic topic, RooFit::MsgLevel level)
Check if logging is active for given object/topic/RooFit::MsgLevel combination.
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:37
A class to calculate "sWeights" used to create an "sPlot".
Definition SPlot.h:32
double GetSWeight(Int_t numEvent, const char *sVariable) const
Retrieve an s weight.
Definition SPlot.cxx:251
void AddSWeight(RooAbsPdf *pdf, const RooArgList &yieldsTmp, const RooArgSet &projDeps=RooArgSet(), bool includeWeights=true, const RooCmdArg &fitToarg5={}, const RooCmdArg &fitToarg6={}, const RooCmdArg &fitToarg7={}, const RooCmdArg &fitToarg8={})
Method which adds the sWeights to the dataset.
Definition SPlot.cxx:419
RooDataSet * fSData
Definition SPlot.h:82
RooArgList GetSWeightVars() const
Return a RooArgList containing all parameters that have s weights.
Definition SPlot.cxx:372
double GetSumOfEventSWeight(Int_t numEvent) const
Sum the SWeights for a particular event.
Definition SPlot.cxx:300
SPlot()
Default constructor.
Definition SPlot.cxx:130
Int_t GetNumSWeightVars() const
Return the number of SWeights In other words, return the number of species that we are trying to extr...
Definition SPlot.cxx:386
~SPlot() override
Definition SPlot.cxx:120
RooDataSet * SetSData(RooDataSet *data)
Set dataset (if not passed in constructor).
Definition SPlot.cxx:230
RooDataSet * GetSDataSet() const
Retrieve s-weighted data.
Definition SPlot.cxx:242
double GetYieldFromSWeight(const char *sVariable) const
Sum the SWeights for a particular species over all events.
Definition SPlot.cxx:331
RooArgList fSWeightVars
Definition SPlot.h:78
void Print(Option_t *name="") const override
Print the matrix as a table of elements.
Double_t Determinant() const override
Return the matrix determinant.
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
virtual void Clear(Option_t *="")
Definition TObject.h:119
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition TObject.h:199
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition TObject.cxx:780
RooCmdArg SumW2Error(bool flag)
RooCmdArg PrintEvalErrors(Int_t numErrors)
RooCmdArg PrintLevel(Int_t code)
RooCmdArg Extended(bool flag=true)
const Int_t n
Definition legend1.C:16
@ InputArguments
Namespace for the RooStats classes.
Definition Asimov.h:19
TMarker m
Definition textangle.C:8