Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
MnSeedGenerator.cxx
Go to the documentation of this file.
1// @(#)root/minuit2:$Id$
2// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei 2003-2005
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2005 LCG ROOT Math team, CERN/PH-SFT *
7 * *
8 **********************************************************************/
9
11#include "Minuit2/MinimumSeed.h"
12#include "Minuit2/MnFcn.h"
19#include "Minuit2/MnMatrix.h"
26#include "Minuit2/MnStrategy.h"
27#include "Minuit2/MnHesse.h"
33#include "Minuit2/MnPrint.h"
34
35#include <cmath>
36
37namespace ROOT {
38
39namespace Minuit2 {
40
42operator()(const MnFcn &fcn, const GradientCalculator &gc, const MnUserParameterState &st, const MnStrategy &stra) const
43{
44
45 MnPrint print("MnSeedGenerator");
46
47 // find seed (initial minimization point) using the calculated gradient
48 const unsigned int n = st.VariableParameters();
49 const MnMachinePrecision &prec = st.Precision();
50
51 print.Info("Computing seed using NumericalGradient calculator");
52
53 print.Debug(n, "free parameters, FCN pointer", &fcn);
54
55 // initial starting values
57 for (unsigned int i = 0; i < n; i++)
58 x(i) = st.IntParameters()[i];
59 double fcnmin = fcn(x);
60
61 MinimumParameters pa(x, fcnmin);
62 FunctionGradient dgrad = gc(pa);
64 double dcovar = 1.;
65 if (st.HasCovariance()) {
66 for (unsigned int i = 0; i < n; i++)
67 for (unsigned int j = i; j < n; j++)
68 mat(i, j) = st.IntCovariance()(i, j);
69 dcovar = 0.;
70 } else {
71 for (unsigned int i = 0; i < n; i++)
72 // if G2 is small better using an arbitrary value (e.g. 1)
73 mat(i, i) = std::fabs(dgrad.G2()(i)) > prec.Eps() ? 1. / dgrad.G2()(i) : 1.0;
74 }
75 MinimumError err(mat, dcovar);
76
77 double edm = VariableMetricEDMEstimator().Estimate(dgrad, err);
78 MinimumState state(pa, err, dgrad, edm, fcn.NumOfCalls());
79
80 print.Info("Initial state:", MnPrint::Oneline(state));
81
83 if (ng2ls.HasNegativeG2(dgrad, prec)) {
84 print.Debug("Negative G2 Found", "\n point:", x, "\n grad :", dgrad.Grad(), "\n g2 :", dgrad.G2());
85
86 state = ng2ls(fcn, state, gc, prec);
87
88 print.Info("Negative G2 found - new state:", state);
89 }
90
91 if (stra.Strategy() == 2 && !st.HasCovariance()) {
92 // calculate full 2nd derivative
93
94 print.Debug("calling MnHesse");
95
96 MinimumState tmp = MnHesse(stra)(fcn, state, st.Trafo());
97
98 print.Info("run Hesse - Initial seeding state:", tmp);
99
100 return MinimumSeed(tmp, st.Trafo());
101 }
102
103 print.Info("Initial state ",state);
104
105 return MinimumSeed(state, st.Trafo());
106}
107
109 const MnUserParameterState &st, const MnStrategy &stra) const
110{
111 MnPrint print("MnSeedGenerator");
112
113 // check gradient (slow: will require more function evaluations)
114 //if (gc.CheckGradient()) {
115 // //CheckGradient(st,trado,stra,grd)
116 //}
117
118 if (!gc.CanComputeG2()) {
119 print.Info("Using analytical (external) gradient calculator but cannot compute G2 - use then numerical gradient for G2");
120 Numerical2PGradientCalculator ngc(fcn, st.Trafo(), stra);
121 return this->operator()(fcn, ngc, st, stra);
122 }
123
124
125
126 if (gc.CanComputeHessian())
127 print.Info("Computing seed using analytical (external) gradients and Hessian calculator");
128 else
129 print.Info("Computing seed using analytical (external) gradients and G2 calculator");
130
131
132
133 // find seed (initial point for minimization) using analytical gradient
134 unsigned int n = st.VariableParameters();
135 const MnMachinePrecision &prec = st.Precision();
136
137 // initial starting values
139 for (unsigned int i = 0; i < n; i++)
140 x(i) = st.IntParameters()[i];
141 double fcnmin = fcn(x);
142 MinimumParameters pa(x, fcnmin);
143
144 // compute function gradient
145 FunctionGradient grad = gc(pa);
146 double dcovar = 0;
148 // if we can compute Hessian compute it and use it
149 bool computedHessian = false;
150 if (!grad.HasG2()) {
151 assert(gc.CanComputeHessian());
153 bool ret = gc.Hessian(pa, hmat);
154 if (!ret) {
155 print.Error("Cannot compute G2 and Hessian");
156 assert(true);
157 }
158 // update gradient using G2 from Hessian calculation
160 for (unsigned int i = 0; i < n; i++)
161 g2(i) = hmat(i,i);
162 grad = FunctionGradient(grad.Grad(),g2);
163
164 print.Debug("Computed analytical G2",g2);
165
166 // when Hessian has been computed invert to get covariance
167 // we prefer not using full Hessian in strategy 1 since we need to be sure that
168 // is pos-defined. Uncomment following line if want to have seed with the full Hessian
169 //computedHessian = true;
170 if (computedHessian) {
171 mat = MinimumError::InvertMatrix(hmat);
172 print.Info("Use full Hessian as seed");
173 print.Debug("computed Hessian",hmat);
174 print.Debug("computed Error matrix (H^-1)",mat);
175 }
176 }
177 // do this only when we have not computed the Hessian or always ?
178 if (!computedHessian) {
179 // check if minimum state has covariance - if not use computed G2
180 // should maybe this an option, sometimes is not good to re-use existing covariance
181 if (st.HasCovariance()) {
182 print.Info("Using existing covariance matrix");
183 for (unsigned int i = 0; i < n; i++)
184 for (unsigned int j = i; j < n; j++)
185 mat(i, j) = st.IntCovariance()(i, j);
186 dcovar = 0.;
187 } else {
188 for (unsigned int i = 0; i < n; i++) {
189 // if G2 is very small, better using an arbitrary value (e.g. 1.)
190 mat(i, i) = std::fabs(grad.G2()(i)) > prec.Eps() ? 1. / grad.G2()(i)
191 : 1.0;
192 }
193 dcovar = 1.;
194 }
195 } else {
196 print.Info("Computing seed using full Hessian");
197 }
198
199 MinimumError err(mat, dcovar);
200 double edm = VariableMetricEDMEstimator().Estimate(grad, err);
201
202 if (!grad.HasG2()) {
203 print.Error("Cannot compute seed because G2 is not computed");
204 }
205 MinimumState state(pa, err, grad, edm, fcn.NumOfCalls());
207 if (ng2ls.HasNegativeG2(grad, prec)) {
208 // do a negative line search - can use current gradient calculator
209 //Numerical2PGradientCalculator ngc(fcn, st.Trafo(), stra);
210 state = ng2ls(fcn, state, gc, prec);
211 }
212
213 // compute Hessian above will not have posdef check as it is done if we call MnHesse
214 if (stra.Strategy() == 2 && !st.HasCovariance() && !computedHessian) {
215 // can calculate full 2nd derivative
216 MinimumState tmpState = MnHesse(stra)(fcn, state, st.Trafo());
217 print.Info("Compute full Hessian: Initial seeding state is ",tmpState);
218 return MinimumSeed(tmpState, st.Trafo());
219 }
220
221 print.Info("Initial seeding state ",state);
222
223 return MinimumSeed(state, st.Trafo());
224}
225#if 0
226bool CheckGradient(MinimumState & st, MnUserTransformation & trafo, MnStrategy & stra)
227{
228
229 const MinimumParameters & pa = st.Parameters();
230 const FunctionGradient & grd = st.FunctionGradient();
231
232 // I think one should use Numerical2PGradientCalculator
233 // since step sizes and G2 of initial gradient are wrong
234 InitialGradientCalculator igc(fcn, trafo, stra);
235 FunctionGradient tmp = igc(pa);
236 // should also use G2 from grd (in case Analyticalgradient can compute Hessian ?)
237 FunctionGradient dgrad(grd.Grad(), tmp.G2(), tmp.Gstep());
238
239 // do check computing gradient with HessianGradientCalculator which refines the gradient given an initial one
240 bool good = true;
241 HessianGradientCalculator hgc(fcn, trafo, MnStrategy(2));
242 std::pair<FunctionGradient, MnAlgebraicVector> hgrd = hgc.DeltaGradient(pa, dgrad);
243 for (unsigned int i = 0; i < n; i++) {
244 if (std::fabs(hgrd.first.Grad()(i) - grd.Grad()(i)) > hgrd.second(i)) {
245 int externalParameterIndex = trafo.ExtOfInt(i);
246 const char *parameter_name = trafo.Name(externalParameterIndex);
247 print.Warn("Gradient discrepancy of external Parameter too large:"
248 "parameter_name =",
249 parameter_name, "externalParameterIndex =", externalParameterIndex, "internal =", i);
250 good = false;
251 }
252 }
253 if (!good) {
254 print.Error("Minuit does not accept user specified Gradient. To force acceptance, override 'virtual bool "
255 "CheckGradient() const' of FCNGradientBase.h in the derived class.");
256
257 assert(good);
258 }
259 return good
260}
261#endif
262
263} // namespace Minuit2
264
265} // namespace ROOT
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void gc
const MnAlgebraicVector & Gstep() const
const MnAlgebraicVector & Grad() const
const MnAlgebraicVector & G2() const
interface class for gradient calculators
HessianGradientCalculator: class to calculate Gradient for Hessian.
Class to calculate an initial estimate of the gradient.
Class describing a symmetric matrix of size n.
Definition LASymMatrix.h:45
MinimumError keeps the inv.
static MnAlgebraicSymMatrix InvertMatrix(const MnAlgebraicSymMatrix &matrix, int &ifail)
MinimumState keeps the information (position, Gradient, 2nd deriv, etc) after one minimization step (...
const MinimumParameters & Parameters() const
Wrapper class to FCNBase interface used internally by Minuit.
Definition MnFcn.h:30
unsigned int NumOfCalls() const
Definition MnFcn.h:39
API class for calculating the numerical covariance matrix (== 2x Inverse Hessian == 2x Inverse 2nd de...
Definition MnHesse.h:40
Sets the relative floating point (double) arithmetic precision.
double Eps() const
eps returns the smallest possible number so that 1.+eps > 1.
void Debug(const Ts &... args)
Definition MnPrint.h:147
void Error(const Ts &... args)
Definition MnPrint.h:129
void Info(const Ts &... args)
Definition MnPrint.h:141
MinimumSeed operator()(const MnFcn &, const GradientCalculator &, const MnUserParameterState &, const MnStrategy &) const override
API class for defining four levels of strategies: low (0), medium (1), high (2), very high (>=3); act...
Definition MnStrategy.h:27
unsigned int Strategy() const
Definition MnStrategy.h:38
class which holds the external user and/or internal Minuit representation of the parameters and error...
const MnMachinePrecision & Precision() const
const std::vector< double > & IntParameters() const
const MnUserTransformation & Trafo() const
const MnUserCovariance & IntCovariance() const
class dealing with the transformation between user specified parameters (external) and internal param...
unsigned int ExtOfInt(unsigned int internal) const
const char * Name(unsigned int) const
In case that one of the components of the second derivative g2 calculated by the numerical Gradient c...
bool HasNegativeG2(const FunctionGradient &, const MnMachinePrecision &) const
class performing the numerical gradient calculation
double Estimate(const FunctionGradient &, const MinimumError &) const
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
This file contains a specialised ROOT message handler to test for diagnostic in unit tests.