Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
GeneticMinimizer.cxx
Go to the documentation of this file.
2
5
6#include "Math/IFunction.h"
8
9#include "TError.h"
10
11#include <cassert>
12
13namespace ROOT {
14namespace Math {
15
16
17// wrapper class for TMVA interface to evaluate objective function
19private:
20 unsigned int fNCalls;
21 unsigned int fNFree;
23 std::vector<int> fFixedParFlag;
24 mutable std::vector<double> fValues;
25
26public:
28 fFunc(function)
29 { fNFree = fFunc.NDim(); }
30
31 unsigned int NCalls() const { return fNCalls; }
32 unsigned int NDims() const { return fNFree; }
33
34 unsigned int NTotal() const { return fFunc.NDim(); }
35
36 void FixParameter(unsigned int ipar, double value, bool fix = true) {
37
38 if (fValues.size() != fFunc.NDim() ) {
39 fValues.resize(fFunc.NDim() );
40 fFixedParFlag.resize(fFunc.NDim());
41 }
42
43 if (ipar >= fValues.size() ) return;
44
45 // first find if it has been already fixed
46 fFixedParFlag[ipar] = fix;
47 fValues[ipar] = value;
48 // count number of fixed params
49 for (unsigned int i = 0; i < fFixedParFlag.size(); ++i)
50 if (!fFixedParFlag[i] ) fNFree++;
51
52 }
53
54 // transform from internal parameters (not fixed to external vector which include the fixed ones)
55 const std::vector<double> & Transform( const std::vector<double> & factors) const {
56 unsigned int n = fValues.size();
57 if (n == 0 || fNFree == n )
58 return factors;
59
60 // in case of fixed parameters
61 for (unsigned int i = 0, j = 0; i < n ; ++i) {
62 if (!fFixedParFlag[i] ) {
63 assert (j < fNFree);
64 fValues[i] = factors[j];
65 j++;
66 }
67 }
68 return fValues;
69 }
70
71 Double_t Evaluate(const std::vector<double> & factors ) const {
72 const std::vector<double> & x = Transform( factors);
73 return fFunc(&x[0]);
74 }
75
76 Double_t EstimatorFunction(std::vector<double> & factors ) override{
77 fNCalls += 1;
78 return Evaluate( factors);
79 }
80};
81
83{
84 // constructor of parameters with default values (use 100 is max iterations is not defined)
86 fNsteps = (defmaxiter > 0) ? defmaxiter : 100;
87 fPopSize =300;
88 fCycles = 3;
89 fSC_steps =10;
90 fSC_rate =5;
91 fSC_factor=0.95;
93 if (fConvCrit <=0 ) fConvCrit = 0.001;
94 fSeed=0; // random seed
95}
96
97// genetic minimizer class
98
100 fFitness(0),
101 fMinValue(0),
102 fParameters(GeneticMinimizerParameters() )
103{
104
105 // check with default minimizer options
107 if (geneticOpt) {
108 ROOT::Math::MinimizerOptions opt; // create using default options
109 opt.SetExtraOptions(*geneticOpt);
110 this->SetOptions(opt);
111 }
112
113 // set the parameters
116 }
117
119{
120 if ( fFitness )
121 {
122 delete fFitness;
123 fFitness = 0;
124 }
125}
126
128{
129 fRanges.clear();
130 fResult.clear();
131 if ( fFitness )
132 {
133 delete fFitness;
134 fFitness = 0;
135 }
136}
137
139{
140 Clear();
141
143 fResult = std::vector<double>(func.NDim() );
144 assert(fResult.size() == NDim() );
145}
146
147bool GeneticMinimizer::SetLimitedVariable(unsigned int , const std::string & , double , double , double lower , double upper )
148{
149 fRanges.push_back( new TMVA::Interval(lower,upper) );
150
151 return true;
152}
153
154bool GeneticMinimizer::SetVariable(unsigned int, const std::string& name, double value, double step)
155{
156 //It does nothing! As there is no variable if it has no limits!
157 double lower = value - (50 * step);
158 double upper = value + (50 * step);
159 Info("GeneticMinimizer::SetVariable", "Variables should be limited - set automatic range to 50 times step size for %s : [%f, %f]",
160 name.c_str(),lower,upper);
161 fRanges.push_back( new TMVA::Interval(lower, upper ) );
162
163 return true;
164}
165
166bool GeneticMinimizer::SetFixedVariable(unsigned int par, const std::string& name, double value) {
167 // set a fixed variable
168 if (!fFitness) {
169 Error("GeneticMinimizer::SetFixedVariable", "Function has not been set - cannot set fixed variables %s",name.c_str());
170 return false;
171 }
172
173 static_cast<MultiGenFunctionFitness*>(fFitness)->FixParameter(par, value);
174 return true;
175}
176
177
179{
180 fParameters = params;
181 // set also the one defined in Minimizer
184}
185
189 return opt;
190}
191
193 // get the genetic options of the class and return them in the MinimizerOptions class
194 opt.SetTolerance(fParameters.fConvCrit/10); // use a factor of 10 to have default as Minuit
197 // use fixed or dammy value for the other options
198 opt.SetMinimizerType("Genetic");
199 opt.SetMaxFunctionCalls(0);
200 opt.SetStrategy(-1);
201 opt.SetErrorDef(0);
202 opt.SetPrecision(0);
203 opt.SetMinimizerAlgorithm("");
204
206 geneticOpt.SetValue("PopSize",fParameters.fPopSize);
207 geneticOpt.SetValue("Steps",fParameters.fNsteps);
208 geneticOpt.SetValue("Cycles",fParameters.fCycles);
209 geneticOpt.SetValue("SC_steps",fParameters.fSC_steps);
210 geneticOpt.SetValue("SC_rate",fParameters.fSC_rate);
211 geneticOpt.SetValue("SC_factor",fParameters.fSC_factor);
212 geneticOpt.SetValue("ConvCrit",fParameters.fConvCrit);
213 geneticOpt.SetValue("RandomSeed",fParameters.fSeed);
214
215 opt.SetExtraOptions(geneticOpt);
216}
217
219{
220 SetTolerance(opt.Tolerance() );
222 //SetMaxFunctionCalls(opt.MaxFunctionCalls() );
224
225 fParameters.fConvCrit = 10.*opt.Tolerance(); // use a factor of 10 to have default as Minuit
226
227 // set genetic parameter from minimizer options
228 const ROOT::Math::IOptions * geneticOpt = opt.ExtraOptions();
229 if (!geneticOpt) {
230 Warning("GeneticMinimizer::SetOptions", "No specific genetic minimizer options have been set");
231 return;
232 }
233
234 // if options are not existing values will not be set
235 geneticOpt->GetValue("PopSize",fParameters.fPopSize);
236 geneticOpt->GetValue("Steps",fParameters.fNsteps);
237 geneticOpt->GetValue("Cycles",fParameters.fCycles);
238 geneticOpt->GetValue("SC_steps",fParameters.fSC_steps);
239 geneticOpt->GetValue("SC_rate",fParameters.fSC_rate);
240 geneticOpt->GetValue("SC_factor",fParameters.fSC_factor);
241 geneticOpt->GetValue("ConvCrit",fParameters.fConvCrit);
242 geneticOpt->GetValue("RandomSeed",fParameters.fSeed);
243
244 // use same of options in base class
245 int maxiter = opt.MaxIterations();
246 if (maxiter > 0 && fParameters.fNsteps > 0 && maxiter != fParameters.fNsteps ) {
247 Warning("GeneticMinimizer::SetOptions", "max iterations value given different than than Steps - set equal to Steps %d",fParameters.fNsteps);
248 }
250
251}
252
254{
255
256 if (!fFitness) {
257 Error("GeneticMinimizer::Minimize","Fitness function has not been set");
258 return false;
259 }
260
261 // sync parameters
263 if (Tolerance() > 0) fParameters.fConvCrit = 10* Tolerance();
264
266
267 if (PrintLevel() > 0) {
268 std::cout << "GeneticMinimizer::Minimize - Start iterating - max iterations = " << MaxIterations()
269 << " conv criteria (tolerance) = " << fParameters.fConvCrit << std::endl;
270 }
271
272 fStatus = 0;
273 unsigned int niter = 0;
274 do {
275 mg.Init();
276
277 mg.CalculateFitness();
278
279 // Just for debugging options
280 //mg.GetGeneticPopulation().Print(0);
281
283
285
286 if (PrintLevel() > 2) {
287 std::cout << "New Iteration " << niter << " with parameter values :" << std::endl;
289 if (genes) {
290 std::vector<Double_t> gvec;
291 gvec = genes->GetFactors();
292 for (unsigned int i = 0; i < gvec.size(); ++i) {
293 std::cout << gvec[i] << " ";
294 }
295 std::cout << std::endl;
296 std::cout << "\tFitness function value = " << static_cast<MultiGenFunctionFitness*>(fFitness)->Evaluate(gvec) << std::endl;
297 }
298 }
299 niter++;
300 if ( niter > MaxIterations() && MaxIterations() > 0) {
301 if (PrintLevel() > 0) {
302 Info("GeneticMinimizer::Minimize","Max number of iterations %d reached - stop iterating",MaxIterations());
303 }
304 fStatus = 1;
305 break;
306 }
307
308 } while (!mg.HasConverged( fParameters.fNsteps, fParameters.fConvCrit )); // converged if: fitness-improvement < CONVCRIT within the last CONVSTEPS loops
309
311 std::vector<Double_t> gvec;
312 gvec = genes->GetFactors();
313
314
315 // transform correctly gvec on fresult in case there are fixed parameters
316 const std::vector<double> & transVec = static_cast<MultiGenFunctionFitness*>(fFitness)->Transform(gvec);
317 std::copy(transVec.begin(), transVec.end(), fResult.begin() );
318 fMinValue = static_cast<MultiGenFunctionFitness*>(fFitness)->Evaluate(gvec);
319
320
321 if (PrintLevel() > 0) {
322 if (PrintLevel() > 2) std::cout << std::endl;
323 std::cout << "Finished Iteration (niter = " << niter << " with fitness function value = " << MinValue() << std::endl;
324 for (unsigned int i = 0; i < fResult.size(); ++i) {
325 std::cout << " Parameter-" << i << "\t=\t" << fResult[i] << std::endl;
326 }
327 }
328
329 return true;
330}
331
333{
334 return (fFitness) ? fMinValue : 0;
335}
336
337const double * GeneticMinimizer::X() const {
338 return (fFitness) ? &fResult[0] : 0;
339}
340
341unsigned int GeneticMinimizer::NCalls() const
342{
343 if ( fFitness )
344 return static_cast<MultiGenFunctionFitness*>(fFitness)->NCalls();
345 else
346 return 0;
347}
348
349unsigned int GeneticMinimizer::NDim() const
350{
351 if ( fFitness )
352 return static_cast<MultiGenFunctionFitness*>(fFitness)->NTotal();
353 else
354 return 0;
355}
356unsigned int GeneticMinimizer::NFree() const
357{
358 if ( fFitness )
359 return static_cast<MultiGenFunctionFitness*>(fFitness)->NDims();
360 else
361 return 0;
362}
363
364// Functions we don't need...
365const double * GeneticMinimizer::MinGradient() const { return 0; }
366bool GeneticMinimizer::ProvidesError() const { return false; }
367const double * GeneticMinimizer::Errors() const { return 0; }
368double GeneticMinimizer::Edm() const { return 0; }
369double GeneticMinimizer::CovMatrix(unsigned int, unsigned int) const { return 0; }
370
371}
372}
void Info(const char *location, const char *msgfmt,...)
Use this function for informational messages.
Definition TError.cxx:218
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
Definition TError.cxx:185
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
Definition TError.cxx:229
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
char name[80]
Definition TGX11.cxx:110
class implementing generic options for a numerical algorithm Just store the options in a map of strin...
const double * X() const override
return pointer to X values at the minimum
unsigned int NDim() const override
this is <= Function().NDim() which is the total number of variables (free+ constrained ones)
double CovMatrix(unsigned int i, unsigned int j) const override
return covariance matrices element for variables ivar,jvar if the variable is fixed the return value ...
unsigned int NFree() const override
number of free variables (real dimension of the problem) this is <= Function().NDim() which is the to...
bool SetLimitedVariable(unsigned int, const std::string &, double, double, double, double) override
set a new upper/lower limited variable (override if minimizer supports them ) otherwise as default se...
virtual void SetOptions(const ROOT::Math::MinimizerOptions &opt)
double MinValue() const override
return minimum function value
const double * Errors() const override
return errors at the minimum
unsigned int NCalls() const override
number of function calls to reach the minimum
bool Minimize() override
method to perform the minimization
void GetGeneticOptions(ROOT::Math::MinimizerOptions &opt) const
bool ProvidesError() const override
minimizer provides error and error matrix
bool SetVariable(unsigned int ivar, const std::string &name, double val, double step) override
set a new free variable
std::vector< double > fResult
TMVA::IFitterTarget * fFitness
std::vector< TMVA::Interval * > fRanges
void SetParameters(const GeneticMinimizerParameters &params)
const double * MinGradient() const override
return pointer to gradient values at the minimum
double Edm() const override
return expected distance reached from the minimum (re-implement if minimizer provides it
void Clear() override
reset for consecutive minimization - implement if needed
ROOT::Math::MinimizerOptions Options() const override
retrieve the minimizer options (implement derived class if needed)
GeneticMinimizerParameters fParameters
void SetFunction(const ROOT::Math::IMultiGenFunction &func) override
set the function to minimize
bool SetFixedVariable(unsigned int ivar, const std::string &name, double val) override
set a new fixed variable (override if minimizer supports them )
Documentation for the abstract class IBaseFunctionMultiDim.
Definition IFunction.h:61
virtual unsigned int NDim() const =0
Retrieve the dimension of the function.
Generic interface for defining configuration options of a numerical algorithm.
Definition IOptions.h:28
void SetValue(const char *name, double val)
generic methods for retrieving options
Definition IOptions.h:42
bool GetValue(const char *name, T &t) const
Definition IOptions.h:54
void SetMaxFunctionCalls(unsigned int maxfcn)
set maximum of function calls
void SetStrategy(int stra)
set the strategy
void SetMaxIterations(unsigned int maxiter)
set maximum iterations (one iteration can have many function calls)
const IOptions * ExtraOptions() const
return extra options (NULL pointer if they are not present)
static ROOT::Math::IOptions * FindDefault(const char *name)
Find an extra options and return a nullptr if it is not existing.
double Tolerance() const
absolute tolerance
void SetMinimizerType(const char *type)
set minimizer type
void SetExtraOptions(const IOptions &opt)
set extra options (in this case pointer is cloned)
unsigned int MaxIterations() const
max iterations
void SetPrecision(double prec)
set the precision
int PrintLevel() const
non-static methods for retrieving options
void SetErrorDef(double err)
set error def
void SetPrintLevel(int level)
set print level
void SetMinimizerAlgorithm(const char *type)
set minimizer algorithm
void SetTolerance(double tol)
set the tolerance
double Tolerance() const
absolute tolerance
Definition Minimizer.h:315
void SetMaxIterations(unsigned int maxiter)
set maximum iterations (one iteration can have many function calls)
Definition Minimizer.h:349
int fStatus
status of minimizer
Definition Minimizer.h:391
unsigned int MaxIterations() const
max iterations
Definition Minimizer.h:312
void SetTolerance(double tol)
set the tolerance
Definition Minimizer.h:352
void SetPrintLevel(int level)
set print level
Definition Minimizer.h:343
int PrintLevel() const
minimizer configuration parameters
Definition Minimizer.h:306
Double_t EstimatorFunction(std::vector< double > &factors) override
MultiGenFunctionFitness(const ROOT::Math::IMultiGenFunction &function)
void FixParameter(unsigned int ipar, double value, bool fix=true)
const ROOT::Math::IMultiGenFunction & fFunc
const std::vector< double > & Transform(const std::vector< double > &factors) const
Double_t Evaluate(const std::vector< double > &factors) const
Base definition for genetic algorithm.
virtual Double_t SpreadControl(Int_t steps, Int_t ofSteps, Double_t factor)
this function provides the ability to change the stepSize of a mutation according to the success of t...
virtual Bool_t HasConverged(Int_t steps=10, Double_t ratio=0.1)
gives back true if the last "steps" steps have lead to an improvement of the "fitness" of the "indivi...
GeneticPopulation & GetGeneticPopulation()
void Init()
calls evolution, but if it is not the first time.
virtual Double_t CalculateFitness()
starts the evaluation of the fitness of all different individuals of the population.
Cut optimisation interface class for genetic algorithm.
std::vector< Double_t > & GetFactors()
void TrimPopulation()
trim the population to the predefined size
GeneticGenes * GetGenes(Int_t index)
gives back the "Genes" of the population with the given index.
Interface for a fitter 'target'.
The TMVA::Interval Class.
Definition Interval.h:61
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
Namespace for new Math classes and functions.
This file contains a specialised ROOT message handler to test for diagnostic in unit tests.