Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
zdemo.py File Reference

Namespaces

namespace  zdemo
 

Detailed Description

View in nbviewer Open in SWAN
This macro is an example of graphs in log scales with annotations.

The presented results are predictions of invariant cross-section of Direct Photons produced at RHIC energies, based on the universality of scaling function H(z).

These Figures were published in JINR preprint E2-98-64, Dubna, 1998 and submitted to CPC.

import ROOT
from array import array
NMAX = 20
Z = array( 'f', [0.]*NMAX )
HZ = array( 'f', [0.]*NMAX )
PT = array( 'f', [0.]*NMAX )
INVSIG = array( 'f', [0.]*NMAX )
NLOOP = 0
saves = {}
#_______________________________________________________________________________
def hz_calc( ENERG, DENS, TGRAD, PTMIN, PTMAX, DELP ):
from math import sin, cos, sqrt
global NLOOP
global Z, HZ, PT, INVSIG
CSEFT= 1.
GM1 = 0.00001
GM2 = 0.00001
A1 = 1.
A2 = 1.
ALX = 2.
BETA = 1.
KF1 = 8.E-7
KF2 = 5.215
MN = 0.9383
DEGRAD=0.01745329
# print 'ENR= %f DENS= %f PTMIN= %f PTMAX= %f DELP= %f ' % (ENERG,DENS,PTMIN,PTMAX,DELP)
DNDETA= DENS
MB1 = MN*A1
MB2 = MN*A2
EB1 = ENERG/2.*A1
EB2 = ENERG/2.*A2
M1 = GM1
M2 = GM2
THET = TGRAD*DEGRAD
NLOOP = int((PTMAX-PTMIN)/DELP)
for I in range(NLOOP):
PT[I]=PTMIN+I*DELP
PTOT = PT[I]/sin(THET)
ETOT = sqrt(M1*M1 + PTOT*PTOT)
PB1 = sqrt(EB1*EB1 - MB1*MB1)
PB2 = sqrt(EB2*EB2 - MB2*MB2)
P2P3 = EB2*ETOT+PB2*PTOT*cos(THET)
P1P2 = EB2*EB1+PB2*PB1
P1P3 = EB1*ETOT-PB1*PTOT*cos(THET)
X1 = P2P3/P1P2
X2 = P1P3/P1P2
Y1 = X1+sqrt(X1*X2*(1.-X1)/(1.-X2))
Y2 = X2+sqrt(X1*X2*(1.-X2)/(1.-X1))
S = (MB1*MB1)+2.*P1P2+(MB2*MB2)
SMIN = 4.*((MB1*MB1)*(X1*X1) +2.*X1*X2*P1P2+(MB2*MB2)*(X2*X2))
SX1 = 4.*( 2*(MB1*MB1)*X1+2*X2*P1P2)
SX2 = 4.*( 2*(MB2*MB2)*X2+2*X1*P1P2)
SX1X2= 4.*(2*P1P2)
DELM = pow((1.-Y1)*(1.-Y2),ALX)
Z[I] = sqrt(SMIN)/DELM/pow(DNDETA,BETA)
Y1X1 = 1. +X2*(1-2.*X1)/(2.*(Y1-X1)*(1.-X2))
Y1X2 = X1*(1-X1)/(2.*(Y1-X1)*(1.-X2)*(1.-X2))
Y2X1 = X2*(1-X2)/(2.*(Y2-X2)*(1.-X1)*(1.-X1))
Y2X2 = 1. +X1*(1-2.*X2)/(2.*(Y2-X2)*(1.-X1))
Y2X1X2= Y2X1*( (1.-2.*X2)/(X2*(1-X2)) -( Y2X2-1.)/(Y2-X2))
Y1X1X2= Y1X2*( (1.-2.*X1)/(X1*(1-X1)) -( Y1X1-1.)/(Y1-X1))
KX1=-DELM*(Y1X1*ALX/(1.-Y1) + Y2X1*ALX/(1.-Y2))
KX2=-DELM*(Y2X2*ALX/(1.-Y2) + Y1X2*ALX/(1.-Y1))
ZX1=Z[I]*(SX1/(2.*SMIN)-KX1/DELM)
ZX2=Z[I]*(SX2/(2.*SMIN)-KX2/DELM)
H1=ZX1*ZX2
HZ[I]=KF1/pow(Z[I],KF2)
INVSIG[I]=(HZ[I]*H1*16.)/S
#_______________________________________________________________________________
def zdemo():
from array import array
global NLOOP
global Z, HZ, PT, INVSIG
global saves
global hz_calc
# Create a new canvas.
c1 = ROOT.TCanvas( 'zdemo', 'Monte Carlo Study of Z scaling', 10, 40, 800, 600 )
c1.Range( 0, 0, 25, 18 )
c1.SetFillColor( 40 )
saves[ 'c1' ] = c1 # prevent deteletion at end of zdemo
pl = ROOT.TPaveLabel( 1, 16.3, 24, 17.5,
'Z-scaling of Direct Photon Productions in pp Collisions at RHIC Energies', 'br' )
pl.SetFillColor(18)
pl.SetTextFont(32)
pl.SetTextColor(49)
pl.Draw()
saves[ 'pl' ] = pl
t = ROOT.TLatex()
t.SetTextFont(32)
t.SetTextColor(1)
t.SetTextSize(0.03)
t.SetTextAlign(12)
t.DrawLatex( 3.1, 15.5, 'M.Tokarev, E.Potrebenikova ')
t.DrawLatex( 14., 15.5, 'JINR preprint E2-98-64, Dubna, 1998 ')
saves[ 't' ] = t
pad1 = ROOT.TPad( 'pad1', 'This is pad1', 0.02, 0.02, 0.48, 0.83, 33 )
pad2 = ROOT.TPad( 'pad2', 'This is pad2', 0.52, 0.02, 0.98, 0.83, 33 )
pad1.Draw()
pad2.Draw()
saves[ 'pad1' ] = pad1; saves[ 'pad2' ] = pad2
#
# Cross-section of direct photon production in pp collisions at 500 GeV vs Pt
#
energ = 63
dens = 1.766
tgrad = 90.
ptmin = 4.
ptmax = 24.
delp = 2.
hz_calc( energ, dens, tgrad, ptmin, ptmax, delp )
pad1.cd()
pad1.Range( -0.255174, -19.25, 2.29657, -6.75 )
pad1.SetLogx()
pad1.SetLogy()
# create a 2-d histogram to define the range
pad1.DrawFrame( 1, 1e-18, 110, 1e-8 )
pad1.GetFrame().SetFillColor( 19 )
t = ROOT.TLatex()
t.SetNDC()
t.SetTextFont( 62 )
t.SetTextColor( 36 )
t.SetTextSize( 0.08 )
t.SetTextAlign( 12 )
t.DrawLatex( 0.6, 0.85, 'p - p' )
t.SetTextSize( 0.05 )
t.DrawLatex( 0.6, 0.79, 'Direct #gamma' )
t.DrawLatex( 0.6, 0.75, '#theta = 90^{o}' )
t.DrawLatex( 0.20, 0.45, 'Ed^{3}#sigma/dq^{3}' )
t.DrawLatex( 0.18, 0.40, '(barn/Gev^{2})' )
t.SetTextSize( 0.045 )
t.SetTextColor( ROOT.kBlue )
t.DrawLatex( 0.22, 0.260, '#sqrt{s} = 63(GeV)' )
t.SetTextColor( ROOT.kRed )
t.DrawLatex( 0.22, 0.205,'#sqrt{s} = 200(GeV)' )
t.SetTextColor( 6 )
t.DrawLatex( 0.22, 0.15, '#sqrt{s} = 500(GeV)' )
t.SetTextSize( 0.05 )
t.SetTextColor( 1 )
t.DrawLatex( 0.6, 0.06, 'q_{T} (Gev/c)' )
saves[ 't2' ] = t # note the label that is used!
gr1 = ROOT.TGraph( NLOOP, PT, INVSIG )
gr1.SetLineColor( 38 )
gr1.SetMarkerColor( ROOT.kBlue )
gr1.SetMarkerStyle( 21 )
gr1.SetMarkerSize( 1.1 )
gr1.Draw( 'LP' )
saves[ 'gr1' ] = gr1
#
# Cross-section of direct photon production in pp collisions at 200 GeV vs Pt
#
energ = 200
dens = 2.25
tgrad = 90.
ptmin = 4.
ptmax = 64.
delp = 6.
hz_calc( energ, dens, tgrad, ptmin, ptmax, delp )
gr2 = ROOT.TGraph( NLOOP, PT, INVSIG )
gr2.SetLineColor( 38 )
gr2.SetMarkerColor( ROOT.kRed )
gr2.SetMarkerStyle( 29 )
gr2.SetMarkerSize( 1.5 )
gr2.Draw( 'LP' )
saves[ 'gr2' ] = gr2
#
# Cross-section of direct photon production in pp collisions at 500 GeV vs Pt
#
energ = 500
dens = 2.73
tgrad = 90.
ptmin = 4.
ptmax = 104.
delp = 10.
hz_calc( energ, dens, tgrad, ptmin, ptmax, delp )
gr3 = ROOT.TGraph( NLOOP, PT, INVSIG )
gr3.SetLineColor( 38 )
gr3.SetMarkerColor( 6 )
gr3.SetMarkerStyle( 8 )
gr3.SetMarkerSize( 1.1 )
gr3.Draw( 'LP' )
saves[ 'gr3' ] = gr3
dum = array( 'f', [0.] )
graph = ROOT.TGraph( 1, dum, dum )
graph.SetMarkerColor( ROOT.kBlue )
graph.SetMarkerStyle( 21 )
graph.SetMarkerSize( 1.1 )
graph.SetPoint( 0, 1.7, 1.e-16 )
graph.Draw( 'LP' )
saves[ 'graph' ] = graph
graph = ROOT.TGraph( 1, dum, dum )
graph.SetMarkerColor( ROOT.kRed )
graph.SetMarkerStyle( 29 )
graph.SetMarkerSize( 1.5 )
graph.SetPoint( 0, 1.7, 2.e-17 )
graph.Draw( 'LP' )
saves[ 'graph2' ] = graph # note the label that is used!
graph = ROOT.TGraph( 1, dum, dum )
graph.SetMarkerColor( 6 )
graph.SetMarkerStyle( 8 )
graph.SetMarkerSize( 1.1 )
graph.SetPoint( 0, 1.7, 4.e-18)
graph.Draw( 'LP' )
saves[ 'graph3' ] = graph # note the label that is used!
pad2.cd()
pad2.Range( -0.43642, -23.75, 3.92778, -6.25 )
pad2.SetLogx()
pad2.SetLogy()
pad2.DrawFrame( 1, 1e-22, 3100, 1e-8 )
pad2.GetFrame().SetFillColor( 19 )
gr = ROOT.TGraph( NLOOP, Z, HZ )
gr.SetTitle( 'HZ vs Z' )
gr.SetFillColor( 19 )
gr.SetLineColor( 9 )
gr.SetMarkerColor( 50 )
gr.SetMarkerStyle( 29 )
gr.SetMarkerSize( 1.5 )
gr.Draw( 'LP' )
saves[ 'gr' ] = gr
t = ROOT.TLatex()
t.SetNDC()
t.SetTextFont( 62 )
t.SetTextColor( 36 )
t.SetTextSize( 0.08 )
t.SetTextAlign( 12 )
t.DrawLatex( 0.6, 0.85, 'p - p' )
t.SetTextSize( 0.05 )
t.DrawLatex( 0.6, 0.79, 'Direct #gamma' )
t.DrawLatex( 0.6, 0.75, '#theta = 90^{o}' )
t.DrawLatex( 0.70, 0.55, 'H(z)' )
t.DrawLatex( 0.68, 0.50, '(barn)' )
t.SetTextSize( 0.045 )
t.SetTextColor( 46 )
t.DrawLatex( 0.20, 0.30, '#sqrt{s}, GeV' )
t.DrawLatex( 0.22, 0.26, '63' )
t.DrawLatex( 0.22, 0.22, '200' )
t.DrawLatex( 0.22, 0.18, '500' )
t.SetTextSize( 0.05 )
t.SetTextColor( 1 )
t.DrawLatex( 0.88, 0.06, 'z' )
saves[ 't3' ] = t # note the label that is used!
c1.Modified()
c1.Update()
if __name__ == '__main__': # run if loaded as script
Option_t Option_t SetFillColor
Definition zdemo.py:1
Authors
Michael Tokarev, Elena Potrebenikova (JINR Dubna)

Definition in file zdemo.py.