52void rs302_JeffreysPriorDemo()
 
   55   w.factory(
"Uniform::u(x[0,1])");
 
   56   w.factory(
"mu[100,1,200]");
 
   57   w.factory(
"ExtendPdf::p(u,mu)");
 
   66   cout << 
"variance = " << (cov.
Determinant()) << endl;
 
   71   w.defineSet(
"poi", 
"mu");
 
   72   w.defineSet(
"obs", 
"x");
 
   85   auto legend = 
plot->BuildLegend();
 
   90void TestJeffreysGaussMean()
 
   93   w.factory(
"Gaussian::g(x[0,-20,20],mu[0,-5.,5],sigma[1,0,10])");
 
   94   w.factory(
"n[10,.1,200]");
 
   95   w.factory(
"ExtendPdf::p(g,n)");
 
   96   w.var(
"sigma")->setConstant();
 
   97   w.var(
"n")->setConstant();
 
  106   cout << 
"variance = " << (cov.
Determinant()) << endl;
 
  111   w.defineSet(
"poi", 
"mu");
 
  112   w.defineSet(
"obs", 
"x");
 
  117   pi.getParameters(*temp)->
Print();
 
  128   auto legend = 
plot->BuildLegend();
 
  133void TestJeffreysGaussSigma()
 
  141   w.factory(
"Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,1,5])");
 
  142   w.factory(
"n[100,.1,2000]");
 
  143   w.factory(
"ExtendPdf::p(g,n)");
 
  145   w.var(
"mu")->setConstant();
 
  146   w.var(
"n")->setConstant();
 
  147   w.var(
"x")->setBins(301);
 
  156   cout << 
"variance = " << (cov.
Determinant()) << endl;
 
  161   w.defineSet(
"poi", 
"sigma");
 
  162   w.defineSet(
"obs", 
"x");
 
  167   pi.getParameters(*temp)->
Print();
 
  177   auto legend = 
plot->BuildLegend();
 
  182void TestJeffreysGaussMeanAndSigma()
 
  190   w.factory(
"Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,1.,5.])");
 
  191   w.factory(
"n[100,.1,2000]");
 
  192   w.factory(
"ExtendPdf::p(g,n)");
 
  194   w.var(
"n")->setConstant();
 
  195   w.var(
"x")->setBins(301);
 
  204   cout << 
"variance = " << (cov.
Determinant()) << endl;
 
  209   w.defineSet(
"poi", 
"mu,sigma");
 
  210   w.defineSet(
"obs", 
"x");
 
  215   pi.getParameters(*temp)->
Print();
 
  219   TH1 *Jeff2d = pi.createHistogram(
"2dJeffreys", *
w.var(
"mu"), 
Binning(10, -5., 5), 
YVar(*
w.var(
"sigma"), 
Binning(10, 1., 5.)));
 
  220   Jeff2d->
Draw(
"surf");
 
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
 
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
 
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
 
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
The RooDataHist is a container class to hold N-dimensional binned data.
 
RooGenericPdf is a concrete implementation of a probability density function, which takes a RooArgLis...
 
Implementation of Jeffrey's prior.
 
A RooPlot is a plot frame and a container for graphics objects within that frame.
 
The RooWorkspace is a persistable container for RooFit projects.
 
TH1 is the base class of all histogram classes in ROOT.
 
void Draw(Option_t *option="") override
Draw this histogram with options.
 
Double_t Determinant() const override
 
TMatrixTSym< Element > & Invert(Double_t *det=nullptr)
Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of B...
 
virtual TObject * DrawClone(Option_t *option="") const
Draw a clone of this object in the current selected pad with: gROOT->SetSelectedPad(c1).
 
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
 
RooCmdArg YVar(const RooAbsRealLValue &var, const RooCmdArg &arg=RooCmdArg::none())
 
RooCmdArg Save(bool flag=true)
 
RooCmdArg SumW2Error(bool flag)
 
RooCmdArg ExpectedData(bool flag=true)
 
RooCmdArg Binning(const RooAbsBinning &binning)
 
RooCmdArg LineColor(Color_t color)
 
RooCmdArg LineStyle(Style_t style)
 
VecExpr< UnaryOp< Sqrt< T >, VecExpr< A, T, D >, T >, T, D > sqrt(const VecExpr< A, T, D > &rhs)
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...