We demonstrate improved recovery from disallowed parameters. For this, we use a polynomial PDF of the form  
\[
  \mathrm{Pol2} = \mathcal{N} \left( c + a_1 \cdot x + a_2 \cdot x^2 + 0.01 \cdot x^3 \right),
\]
 where \( \mathcal{N} \) is a normalisation factor. Unless the parameters are chosen carefully, this function can be negative, and hence, it cannot be used as a PDF. In this case, RooFit passes an error to the minimiser, which might try to recover.
 
 
 
 
  
  
  
 
  
  std::unique_ptr<RooDataSet> 
data(pdf.generate(
x, 10000));
 
 
  
  
  
 
  
  
 
 
  
  
  
  
 
  
  a1.setVal(10.);
  a2.setVal(-1.);
 
  
  std::unique_ptr<RooFitResult> fitWithoutRecovery{pdf.fitTo(*
data, 
RooFit::Save(),
 
 
 
 
 
  
  
  
  
  std::cout << "\n\n\n-------------- Starting second fit ---------------\n\n" << std::endl;
 
  
  a1.setVal(10.);
  a2.setVal(-1.);
 
  
                                               
 
 
 
 
  
  
  
  
  fitWithoutRecovery->Print();
  std::cout << "Without recovery, the fitter encountered " << fitWithoutRecovery->numInvalidNLL()
      << " invalid function values. The parameters are unchanged." << std::endl;
 
  fitWithRecovery->Print();
  std::cout << "With recovery, the fitter encountered " << fitWithRecovery->numInvalidNLL()
      << " invalid function values, but the parameters are fitted." << std::endl;
 
  legend->
AddEntry(
"noRecovery", 
"Without recovery (cannot be plotted)", 
"L");
 
  legend->
AddEntry(
"recovery", 
"With recovery", 
"L");
 
}
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
static RooMsgService & instance()
Return reference to singleton instance.
 
StreamConfig & getStream(Int_t id)
 
A RooPlot is a plot frame and a container for graphics objects within that frame.
 
static RooPlot * frame(const RooAbsRealLValue &var, double xmin, double xmax, Int_t nBins)
Create a new frame for a given variable in x.
 
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
 
RooPolynomial implements a polynomial p.d.f of the form.
 
RooRealVar represents a variable that can be changed from the outside.
 
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
 
This class displays a legend box (TPaveText) containing several legend entries.
 
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
 
void Draw(Option_t *option="") override
Draw this legend with its current attributes.
 
virtual void SetBorderSize(Int_t bordersize=4)
 
RooCmdArg Save(bool flag=true)
 
RooCmdArg PrintEvalErrors(Int_t numErrors)
 
RooCmdArg PrintLevel(Int_t code)
 
RooCmdArg RecoverFromUndefinedRegions(double strength)
When parameters are chosen such that a PDF is undefined, try to indicate to the minimiser how to leav...
 
RooCmdArg LineColor(Color_t color)
 
RooCmdArg Name(const char *name)
 
void removeTopic(RooFit::MsgTopic oldTopic)
 
   
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#0] ERROR:Eval -- RooAbsReal::logEvalError(pol3) evaluation error, 
 origin       : RooPolynomial::pol3[ x=x coefList=(a1,a2,a3) ]
 message      : p.d.f normalization integral is zero or negative: -2220.000000
 server values: x=x=0, coefList=(a1 = 2.60781 +/- 11.9002,a2 = -1 +/- 11.5683,a3 = 0.01)
 
 
 
-------------- Starting second fit ---------------
 
 
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
 **********
 **   15 **SET NOGRAD
 **********
 PARAMETER DEFINITIONS:
    NO.   NAME         VALUE      STEP SIZE      LIMITS
     1 a1           1.00000e+01  1.19002e+01   -1.00000e+01  2.00000e+01
     2 a2          -1.00000e+00  1.15683e+01   -1.00000e+01  2.00000e+01
 **********
 **   16 **SET ERR         0.5
 **********
 **********
 **   17 **SET PRINT           0
 **********
 **********
 **   18 **SET STR           1
 **********
 **********
 **   19 **MIGRAD        1000           1
 **********
 MIGRAD MINIMIZATION HAS CONVERGED.
 MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
 FCN=-858.564 FROM MIGRAD    STATUS=CONVERGED     243 CALLS         244 TOTAL
                     EDM=7.33131e-05    STRATEGY= 1      ERROR MATRIX ACCURATE 
  EXT PARAMETER                                   STEP         FIRST   
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  a1          -4.98209e-01   2.27025e-02   2.77075e-05  -2.18163e+00
   2  a2           1.98271e-01   5.64128e-03   1.48249e-05  -2.54212e+01
                               ERR DEF= 0.5
 **********
 **   20 **SET ERR         0.5
 **********
 **********
 **   21 **SET PRINT           0
 **********
 **********
 **   22 **HESSE        1000
 **********
 FCN=-858.564 FROM HESSE     STATUS=OK             10 CALLS         254 TOTAL
                     EDM=7.3377e-05    STRATEGY= 1      ERROR MATRIX ACCURATE 
  EXT PARAMETER                                INTERNAL      INTERNAL  
  NO.   NAME      VALUE            ERROR       STEP SIZE       VALUE   
   1  a1          -4.98209e-01   2.27254e-02   8.14968e-06  -3.41822e+01
   2  a2           1.98271e-01   5.64697e-03   7.41245e-06   3.10901e+01
                               ERR DEF= 0.5
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
 
  RooFitResult: minimized FCN value: 0, estimated distance to minimum: 0
                covariance matrix quality: Approximation only, not accurate
                Status : MINIMIZE=200 HESSE=200 
 
    Floating Parameter    FinalValue +/-  Error   
  --------------------  --------------------------
                    a1    2.6078e+00 +/-  1.19e+01
                    a2   -1.0000e+00 +/-  1.16e+01
 
Without recovery, the fitter encountered 66 invalid function values. The parameters are unchanged.
 
  RooFitResult: minimized FCN value: 29650.9, estimated distance to minimum: 7.3377e-05
                covariance matrix quality: Full, accurate covariance matrix
                Status : MINIMIZE=0 HESSE=0 
 
    Floating Parameter    FinalValue +/-  Error   
  --------------------  --------------------------
                    a1   -4.9821e-01 +/-  2.27e-02
                    a2    1.9827e-01 +/-  5.65e-03
 
With recovery, the fitter encountered 72 invalid function values, but the parameters are fitted.