Using the RooCustomizer to create multiple PDFs that share a lot of properties, but have unique parameters for each category. 
As an extra complication, some of the new parameters need to be functions of a mass parameter.
 
import ROOT
 
E = ROOT.RooRealVar("Energy", "Energy", 0, 3000)
 
meanG = ROOT.RooRealVar("meanG", "meanG", 100.0, 0.0, 3000.0)
sigmaG = ROOT.RooRealVar("sigmaG", "sigmaG", 3.0)
gauss = ROOT.RooGaussian("gauss", "gauss", E, meanG, sigmaG)
 
pol1 = ROOT.RooRealVar("pol1", "Constant of the polynomial", 1, -10, 10)
linear = ROOT.RooPolynomial("linear", "linear", E, pol1)
 
yieldSig = ROOT.RooRealVar("yieldSig", "yieldSig", 1, 0, 1.0e4)
yieldBkg = ROOT.RooRealVar("yieldBkg", "yieldBkg", 1, 0, 1.0e4)
 
model = ROOT.RooAddPdf("model", "S + B model", [gauss, linear], [yieldSig, yieldBkg])
 
print("The proto model before customisation:\n")
model.Print("T")  
 
 
sample = ROOT.RooCategory("sample", "sample", {"Sample1": 1, "Sample2": 2, "Sample3": 3})
 
 
 
newLeafs = ROOT.RooArgSet()
allCustomiserNodes = ROOT.RooArgSet()
 
 
cust = ROOT.RooCustomizer(model, sample, newLeafs, allCustomiserNodes)
cust.splitArg(meanG, sample)
 
 
mass = ROOT.RooRealVar("M", "M", 1, 0, 12000)
yield1 = ROOT.RooFormulaVar("yieldSig_Sample1", "Signal yield in the first sample", "M/3.360779", mass)
yield2 = ROOT.RooFormulaVar("yieldSig_Sample2", "Signal yield in the second sample", "M/2", mass)
allCustomiserNodes.add(yield1)
allCustomiserNodes.add(yield2)
 
cust.splitArg(yieldSig, sample)
 
 
pdf1 = cust.build("Sample1")
pdf2 = cust.build("Sample2")
pdf3 = cust.build("Sample3")
 
print("\nPDF 1 with a yield depending on M:\n")
pdf1.Print("T")
print("\nPDF 2 with a yield depending on M:\n")
pdf2.Print("T")
print("\nPDF 3 with a free yield:\n")
pdf3.Print("T")
 
print("\nThe following leafs have been created automatically while customising:\n")
newLeafs.Print("V")
 
meanG1 = allCustomiserNodes["meanG_Sample1"]
meanG1.setVal(200)
meanG2 = allCustomiserNodes["meanG_Sample2"]
meanG2.setVal(300)
 
print(
    "\nThe following leafs have been used while customising\n\t(partial overlap with the set of automatically created leaves.\n\ta new customiser for a different PDF could reuse them if necessary.):"
)
allCustomiserNodes.Print("V")
 
del cust
  [#0] WARNING:InputArguments -- The parameter 'sigmaG' with range [-1e+30, 1e+30] of the RooGaussian 'gauss' exceeds the safe range of (0, inf). Advise to limit its range.
0x7bc3170 RooAddPdf::model = 750.5/1 [Auto,Clean] 
  0x76b3ff0/V- RooGaussian::gauss = 0 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x6a84430/V- RooRealVar::meanG = 100
    0x658a1d0/V- RooRealVar::sigmaG = 3
  0x77e3620/V- RooRealVar::yieldSig = 1
  0x77c7550/V- RooPolynomial::linear = 1501 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x765e430/V- RooRealVar::pol1 = 1
  0x77d8430/V- RooRealVar::yieldBkg = 1
0x81d49a0 RooAddPdf::model_Sample1 = 1156.8/1 [Auto,Clean] 
  0x80fec20/V- RooGaussian::gauss_Sample1 = 0 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x7d0e140/V- RooRealVar::meanG_Sample1 = 100
    0x658a1d0/V- RooRealVar::sigmaG = 3
  0x589ba00/V- RooFormulaVar::yieldSig_Sample1 = 0.29755 [Auto,Clean] 
    0x7d5bdd0/V- RooRealVar::M = 1
  0x77c7550/V- RooPolynomial::linear = 1501 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x765e430/V- RooRealVar::pol1 = 1
  0x77d8430/V- RooRealVar::yieldBkg = 1
0x812adc0 RooAddPdf::model_Sample2 = 1000.67/1 [Auto,Clean] 
  0x77c2b20/V- RooGaussian::gauss_Sample2 = 0 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x8199c00/V- RooRealVar::meanG_Sample2 = 100
    0x658a1d0/V- RooRealVar::sigmaG = 3
  0x817d640/V- RooFormulaVar::yieldSig_Sample2 = 0.5 [Auto,Clean] 
    0x7d5bdd0/V- RooRealVar::M = 1
  0x77c7550/V- RooPolynomial::linear = 1501 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x765e430/V- RooRealVar::pol1 = 1
  0x77d8430/V- RooRealVar::yieldBkg = 1
0x81839e0 RooAddPdf::model_Sample3 = 750.5/1 [Auto,Clean] 
  0x81d3db0/V- RooGaussian::gauss_Sample3 = 0 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x811dfb0/V- RooRealVar::meanG_Sample3 = 100
    0x658a1d0/V- RooRealVar::sigmaG = 3
  0x81914e0/V- RooRealVar::yieldSig_Sample3 = 1
  0x77c7550/V- RooPolynomial::linear = 1501 [Auto,Dirty] 
    0x6d15210/V- RooRealVar::Energy = 1500
    0x765e430/V- RooRealVar::pol1 = 1
  0x77d8430/V- RooRealVar::yieldBkg = 1
  1) RooRealVar::    meanG_Sample1 = 100
  2) RooRealVar::    meanG_Sample2 = 100
  3) RooRealVar::    meanG_Sample3 = 100
  4) RooRealVar:: yieldSig_Sample3 = 1
  1) RooFormulaVar:: yieldSig_Sample1 = 0.29755
  2) RooFormulaVar:: yieldSig_Sample2 = 0.5
  3) RooRealVar::    meanG_Sample1 = 200
  4) RooRealVar::    meanG_Sample2 = 300
  5) RooRealVar::    meanG_Sample3 = 100
  6) RooRealVar:: yieldSig_Sample3 = 1
The proto model before customisation:
 
 
PDF 1 with a yield depending on M:
 
 
PDF 2 with a yield depending on M:
 
 
PDF 3 with a free yield:
 
 
The following leafs have been created automatically while customising:
 
 
The following leafs have been used while customising
   (partial overlap with the set of automatically created leaves.
   a new customiser for a different PDF could reuse them if necessary.):
- Date
 - June 2021 
 
- Author
 - Harshal Shende, Stephan Hageboeck (C++ version) 
 
Definition in file rf514_RooCustomizer.py.