Multidimensional models: working with parametrized ranges to define non-rectangular regions for fitting and integration 
 
  
 
{
 
   
   
 
   
 
   
 
   
   
 
   
   
   
 
   
   y.setRange(
"R", ylo, yhi);
 
 
   
   z.setRange("R", zlo, zhi);
 
   
   
 
   
 
   
   RooPlot *frame = z0.
frame(Title(
"Integral of pxyz over x,y,z in region R"));
 
   intPdf->plotOn(frame);
 
   new TCanvas(
"rf313_paramranges", 
"rf313_paramranges", 600, 600);
 
   gPad->SetLeftMargin(0.15);
 
 
   return;
}
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
A RooPlot is a plot frame and a container for graphics objects within that frame.
 
static RooPlot * frame(const RooAbsRealLValue &var, double xmin, double xmax, Int_t nBins)
Create a new frame for a given variable in x.
 
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
 
RooPolynomial implements a polynomial p.d.f of the form.
 
RooProdPdf is an efficient implementation of a product of PDFs of the form.
 
RooRealVar represents a variable that can be changed from the outside.
 
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
 
   
[#1] INFO:NumericIntegration -- RooRealIntegral::init(pxyz_Int[z|R]_Norm[x,y,z]_Int[y|R]_Int[x|R]) using numeric integrator RooIntegrator1D to calculate Int(x)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(pxyz_Int[z|R]_Norm[x,y,z]_Int[y|R]) using numeric integrator RooIntegrator1D to calculate Int(y)
- Date
 - July 2008 
 
- Author
 - Wouter Verkerke 
 
Definition in file rf313_paramranges.C.