16void mlpHiggs(
Int_t ntrain=100) {
 
   17   const char *fname = 
"mlpHiggs.root";
 
   24      printf(
"accessing %s file from http://root.cern.ch/files\n",fname);
 
   31   TTree *simu = 
new TTree(
"MonteCarlo", 
"Filtered Monte Carlo Events");
 
   32   Float_t ptsumf, qelep, nch, msumf, minvis, acopl, acolin;
 
   48   simu->
Branch(
"ptsumf", &ptsumf, 
"ptsumf/F");
 
   49   simu->
Branch(
"qelep",  &qelep,  
"qelep/F");
 
   50   simu->
Branch(
"nch",    &nch,    
"nch/F");
 
   51   simu->
Branch(
"msumf",  &msumf,  
"msumf/F");
 
   52   simu->
Branch(
"minvis", &minvis, 
"minvis/F");
 
   53   simu->
Branch(
"acopl",  &acopl,  
"acopl/F");
 
   54   simu->
Branch(
"acolin", &acolin, 
"acolin/F");
 
   58   for (i = 0; i < sig_filtered->
GetEntries(); i++) {
 
   63   for (i = 0; i < bg_filtered->
GetEntries(); i++) {
 
   72                                "ptsumf",simu,
"Entry$%2",
"(Entry$+1)%2");
 
   73   mlp->
Train(ntrain, 
"text,graph,update=10");
 
   74   mlp->
Export(
"test",
"python");
 
   76   TCanvas* mlpa_canvas = 
new TCanvas(
"mlpa_canvas",
"Network analysis");
 
   80   ana.GatherInformations();
 
   91   ana.DrawNetwork(0,
"type==1",
"type==0");
 
   97   TH1F *bg = 
new TH1F(
"bgh", 
"NN output", 50, -.5, 1.5);
 
   98   TH1F *sig = 
new TH1F(
"sigh", 
"NN output", 50, -.5, 1.5);
 
  102   for (i = 0; i < bg_filtered->
GetEntries(); i++) {
 
  109   for (i = 0; i < sig_filtered->
GetEntries(); i++) {
 
  125   legend->
AddEntry(bg, 
"Background (WW)");
 
  126   legend->
AddEntry(sig, 
"Signal (Higgs)");
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
R__EXTERN TSystem * gSystem
 
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
 
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
 
virtual void SetLineColor(Color_t lcolor)
Set the line color.
 
TVirtualPad * cd(Int_t subpadnumber=0) override
Set current canvas & pad.
 
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
1-D histogram with a float per channel (see TH1 documentation)}
 
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
 
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
 
void Draw(Option_t *option="") override
Draw this histogram with options.
 
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
 
This class displays a legend box (TPaveText) containing several legend entries.
 
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
 
void Draw(Option_t *option="") override
Draw this legend with its current attributes.
 
This utility class contains a set of tests usefull when developing a neural network.
 
This class describes a neural network.
 
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
 
void Export(Option_t *filename="NNfunction", Option_t *language="C++") const
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ ,...
 
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
 
void Draw(Option_t *option="") override
Draws the network structure.
 
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
 
static const TString & GetTutorialDir()
Get the tutorials directory in the installation. Static utility function.
 
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
 
A TTree represents a columnar dataset.
 
virtual Int_t Fill()
Fill all branches.
 
virtual Int_t GetEntry(Long64_t entry, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
 
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=nullptr)
Change branch address, dealing with clone trees properly.
 
virtual Long64_t GetEntries() const
 
TBranch * Branch(const char *name, T *obj, Int_t bufsize=32000, Int_t splitlevel=99)
Add a new branch, and infer the data type from the type of obj being passed.